编号 zgly0001710991
文献类型 期刊论文
文献题名 利用近红外光谱技术分析玉米秸秆和小麦秸秆的营养成分
作者单位 兰州大学草地农业生态系统国家重点实验室/兰州大学农业农村部草牧业创新重点实验室/兰州大学草地农业科技学院 甘肃省肉羊繁育生物技术工程实验室
母体文献 草业科学
年卷期 2020年06期
年份 2020
分类号 S816.5
关键词 玉米秸秆 小麦秸秆 近红外光谱技术 定量分析 营养成分
文摘内容 为利用近红外光谱技术(near-infrared reflectance spectroscopy, NIRS)分别建立玉米秸秆(corn straw)和小麦秸秆(wheat straw)的近红外预测模型,本研究从甘肃、新疆和河南3个省(区)共采集玉米秸秆样品155份、小麦秸秆样品135份,选取玉米秸秆124份作为定标集、31份作为验证集,小麦秸秆108份作为定标集、27份作为验证集,利用近红外光谱技术结合改良偏最小二乘法(MPLS)等化学计量学方法分别建立玉米秸秆和小麦秸秆的干物质(dry matter,DM)、粗蛋白(crude protein, CP)、中性洗涤纤维(neutral detergent fiber, NDF)、酸性洗涤纤维(acid detergent fiber, ADF)和酸性洗涤木质素(acid detergent lignin, ADL) 5个指标的近红外预测模型。结果表明:1)玉米秸秆DM、CP、NDF、ADF和ADL的平均含量分别为94.60%、 5.16%、 63.88%、 36.33%和3.32%;小麦秸秆DM、 CP、 NDF、 ADF和ADL的平均含量分别为95.35%、3.42%、77.31%、46.59%和6.84%。2)玉米和小麦秸秆的CP含量预测模型交互验证决定系数(1-VR)> 0.90,且外部验证决定系数(RSQ)> 0.84,构建的模型可以用于实际预测。3)玉米秸秆DM、NDF、ADF和小麦秸秆DM各指标定标模型的1-VR值在0.80左右,可以粗略地预测其营养成分含量,其余各指标模型预测效果不太理想,模型需要进一步优化。综上所述,本研究为生产实践中快速预测玉米和小麦秸秆营养成分含量提供了理论依据,并且通过NIRS建立了其近红外预测模型。