编号
lyqk006472
中文标题
林火图像识别理论研究进展
作者单位
南京林业大学智能控制与机器人技术研究所,南京 210037;南京林业大学机械电子工程学院,南京 210037,南京林业大学智能控制与机器人技术研究所,南京 210037;南京林业大学机械电子工程学院,南京 210037
期刊名称
世界林业研究
年份
2018
卷号
31
期号
1
栏目编号
1
栏目名称
专题论述
中文摘要
林火图像识别理论与方法是实现森林火灾视频自动监测的基础。文中从图像预处理、图像分割和特征提取3个方面详细地综述了国内外林火图像识别理论的发展现状,分析了图像颜色处理、图像滤波、图像阈值分割、区域分割、边缘分割以及动静态特征提取理论在林火图像识别应用中的优缺点;针对目前林火图像识别理论研究现状,指出在未来研究中需要解决的问题以及林火图像识别理论的发展方向,以期为图像识别技术在林火图像识别中的应用和进一步研究提供参考。
基金项目
国家公益性行业科研专项重大项目(201404402-03)。
英文标题
Research Progress in Forest Fire Image Recognition Theory
作者英文名
Yuan Wenwen and Jiang Shuhai
单位英文名
Institute of Intelligent Control and Robotics,Nanjing Forestry University,Nanjing 210037,China;College of Mechanical and Electronic Engineering,Nanjing Forestry University,Nanjing 210037,China and Institute of Intelligent Control and Robotics,Nanjing Forestry University,Nanjing 210037,China;College of Mechanical and Electronic Engineering,Nanjing Forestry University,Nanjing 210037,China
英文摘要
The theory and method of forest fire image recognition is the basis to achieve the automatic monitoring of forest fire video. This paper summarized in detail the development of forest fire image recognition theory at home and abroad in terms of image preprocessing, image segmentation and feature extraction. It also analyzed the advantages and disadvantages of image color processing, image filtering, image threshold segmentation, region segmentation, edge segmentation and dynamic and static feature extraction theory. In view of the current research on forest fire image recognition theory, the paper put forward the problems that need to be solved in the future research on forest fire image recognition theory, and pointed out its future development direction. This study is expected to provide references to the application of image recognition technology to the forest fire image recognition as well as the further research in this regard.
英文关键词
forest fire;image recognition;image preprocessing;image segmentation;feature extraction
起始页码
35
截止页码
39
投稿时间
2017/6/8
分类号
S762.3+2;TP751
DOI
10.13348/j.cnki.sjlyyj.2017.0079.y
参考文献
[1] 舒立福,田晓瑞.国外森林防火工作现状及展望[J].世界林业研究, 1997,10(2):28-36.
[2] 国家林业局. 2016中国林业发展报告[M].北京:中国林业出版社, 2016:89-101.
[3] 国家863计划智能机器人专家组.机器人博览[M].北京:中国科学技术出版社,2001.
[4] 徐海燕,姜树海.森林作业机器人研究动态[J].世界林业研究,2017,30(2):51-55.
[5] 张楠,姜树海.消防机器人研究进展及其在森林消防中应用前景[J].世界林业研究, 2015, 28(2):42-47.
[6] 柳天虹,姜树海.基于ARM的机器人远程网络视频监控系统[J]. 测控技术, 2014, 33(5):65-68.
[7] CHEN T H, YIN Y H, HUANG S F, et al. The smoke detection for early fire-alarming system base on video processing[C].International Conference on Intelligent Information Hiding and Multimedia.IEEE,2006:427-430.
[8] CELIK T, DEMIREL H, OZKARAMANLI H, et al. Fire detection using statistical color model in video sequences[J].Journal of Visual Communication & Image Representation, 2007, 18(2):176-185.
[9] 于海晶,李桂菊.基于差分盒维数的彩色烟雾图像识别[J].山东大学学报(工学版), 2014, 44(1):35-40.
[10] HORNG W B, PENG J W, CHEN C Y.A new image-based real-time flame detection method using color analysis[C].International Conference on Networking,Sensing and Control.IEEE,2005:100-105.
[11] YAMAGISHI H,YAMAGUCHI J.Fire flame detection algorithm using a color camera[C].International Symposium on Micromechatronics and Human Science.IEEE,1999:255-260.
[12] MARBACH G, LOEPFE M, BRUPBACHER T. An image processing technique for fire detection in video images[J].Fire Safety Journal, 2006, 41(4):285-289.
[13] ANGAYARKKANI K,RADHAKRISHNAN N.Efficient forest fire detection system:a spatial data mining and image processing based approach[J].International Journal of Computer Science and Network Security, 2009,9(3):100-107.
[14] VIPIN V.Image processing based forest fire detection[J].International Journal of Emerging Technology and Advanced Engineering,2012,2(2):87-95.
[15] HWANG H,HADDAD R.Adaptive median filters:new algorithms and results[J].IEEE Transactions on Image Processing,1995,4(4):499-502.
[16] WANG Z,ZHANG D.Progressive switching median filter for the removal of impulse noise from highly corrupted images[J]. IEEE Transactions on Circuits & Systems Ⅱ Analog & Digital Signal Processing,1999, 46(1):78-80.
[17] CMOJEVIC V, SENK V, TRPOVSKI Z. Advanced impulse detection based on pixel-wise mad[J]. IEEE Signal Processing Letters, 2004, 11(7):589-592.
[18] GONG J,LI L Y,CHEN W.A fast recursive algorithm for two-dimensional thresholding[J].Pattern Recognition,1998,31(3):295-300.
[19] CHIEN B C,CHENG M C.A color image segmentation approach based on fuzzy similarity measure[C].International Conference on Fuzzy System.IEEE,2002:449-454.
[20] 丁虎,姚磊,刘少刚,等.基于神经网络和图像分割的林火图像识别研究[J]. 应用科技,2016, 43(3):82-86.
[21] PUN T. A new method for gray-level picture threshold using the entropy of the histogram[J]. Signal Processing, 1980, 2(3):223-237.
[22] ABUTABLEB A S.Automatic thresholding of gray-level pictures using two-dimensional entropy[J].Computer Vision Graphics & Image Processing,1989,47(1):22-32.
[23] PHILLIPS Ⅲ W,SHAH M,LOBO N D V. Flame recognition in video[J].Pattern Recognition Letters, 2002, 23(1):319-327.
[24] KRSTINI D,STIPANI EV D,JAKOV EVI T.Histogram-based smoke segmentation in forest fire detection system[J]. Information Technology & Control, 2009, 38(3):237-244.
[25] VINCENT L,SOILLE P.Watersheds in digital spaces:an efficient algorithm based on immersion simulations[J]. IEEE Transactions on Pattern Analysis & Machine Intelligence,1991,13(6):583-598.
[26] SHEZAF N,ABRAMOV-SEGAL H,SUTSKOVER I,et al. Adaptive low complexity algorithm for image zooming at fractional scaling ration[C].21st Convention of The Electrical and Electronic Engineers in Israel.IEEE, 2000:253-256.
[27] JUNG C R.Combining wavelets and watersheds for robust multiscale image segmentation[J].Image & Vision Computing,2007,25(1):24-33.
[28] NG H P,ONG S H,FOONG K W C,et al.Masseter segmentation using an improved watershed algorithm with unsupervised classification[J]. Computers in Biology & Medicine, 2008, 38(2):171-184.
[29] 许维胜,田长征,方盛明. 基于图像视觉特征的火灾自动识别[J].计算机工程,2003,29(18):112-113.
[30] WAN T,QIN Z.Statistical multisensor image segmentation in complex wavelet domains[C].International Conference on Image Analysis and Processing. Springer,Berlin,Heidelberg, 2011:60-68.
[31] 任厚平,张永明,张维农,等. 基于混合高斯模型定位的火灾烟雾纹理特征提取[J].微计算机信息,2005(21):83-85.
[32] JIANG B,LU Y,LI X,et al.Towards a solid solution of real-time fire and flame detection[J].Multimedia Tools & Applications,2015, 74(3):689-705.
[33] SHI L,LIU X,LIU P.An analysis of fire frame processing and video dynamic features[M]//Algorithms and Architectures for Parallel Processing.Berlin,Heidelberg:Springer,2009:182-189.
[34] JIANG L L,QI Q W,ZHANGg A,et al.Improving the accuracy of image-based forest fire recognition and spatial positioning[J]. Science China Technological Sciences,2010,53:184-190.
[35] KOERICH BORGES P V,MAYER J,IZQUIERDO E.Efficient visual fire detection applied for video retrieval[C].Signal Processing Conference,200816th European. IEEE,2008:1-5.
[36] CHEN T H,WU P H,CHIOU Y C.An early fire-detection method based on image processing[C].International Conference on Image Processing. IEEE,2004,3:1707-1710.
[37] ZHANG J,ZHUANG J,DU H.A new flame detection method using probability model[C].International Conference on Computational Intelligence and Security. IEEE,2007:1614-1617.
[38] 沈诗林,于春雨,袁非牛,等.一种基于视频图像相关性的火灾火焰识别方法[J]. 安全与环境学报, 2007,7(6):96-99.
[39] 吴梦宇,罗琴娟,韩宁.基于多运动特征的森林火灾烟雾图像识别算法[J].北京林业大学学报,2013, 35(3):154-158.
[40] XU A,FANG L M,LOU X W.Forest fire identification algorithm based on a visible light video[J].Journal of Beijing Forestry University, 2010, 32(2):14-20.
[41] ZHAO J H,ZHONG Z,HAN S Z,et al.SVM based forest fire detection using static and dynamic features[J].Computer Science & Information Systems, 2011,8(3):821-841.
[42] 林宏,刘志刚,赵同林,等.基于视频的林火烟雾识别算法研究[J].安全与环境学报, 2013,13(2):210-214.
[43] 张学敏,蔡晓东,梁玉敏,等.基于目标跟踪和多特征融合的火焰检测算法[J].电视技术,2013,37(15):205-210.
[44] 臧光明,黄晨杰,王亚美,等.视频火灾多判据识别技术及其应用[J].计算机应用与软件,2013,30(2):65-67.
[45] JIA Y,YUAN J,WANG J,et al.A saliency-based method for early smoke detection in video sequences[J].Fire Technology,2015, 52(5):1-22.
[46] YUAN C,LIU Z,ZHANG Y. Aerial images-based forest fire detection for firefighting using optical remote sensing techniques and unmanned aerial vehicles[J]. Journal of Intelligent & Robotic Systems, 2017,88(2/3/4):1-20.
PDF全文
浏览全文