编号 zgly0001706715
文献类型 期刊论文
文献题名 基于GF-1和Sentinel-1A的漓江流域典型地物信息提取
作者单位 桂林理工大学测绘地理信息学院
母体文献 遥感技术与应用
年卷期 2020年02期
年份 2020
分类号 X37 TN957.52 TP18
关键词 漓江流域 光学遥感 合成孔径雷达 随机森林算法 地物遥感识别
文摘内容 漓江流域是桂林山水的核心,保护漓江流域生态环境已成为国家战略。以漓江流域为研究区域,以GF-1多光谱影像和SAR影像为数据源,采用小波融合算法将GF-1多光谱影像和SAR VV极化的后向散射影像进行影像融合,再利用随机森林算法分别对GF-1多光谱影像、GF-1和Sentinel融合影像构建典型地物高精度识别模型,提取与漓江流域生态环境紧密相关的河流、针叶林、阔叶林、水田、旱地以及居民地等地物类型。研究结果表明:①在95%置信区间内,基于GF-1影像分类的总体分类精度达到96.15%,基于GF-1和Sentinel-1A后向散射系数的影像总体分类精度达到了94.40%;②河流、阔叶林和旱地在基于GF-1多光谱影像的分类精度中分别达到了97.74%、93.20%、90.90%,比基于融合GF-1多光谱和SAR的数据分别高出7.57%、8.96%和1.22%,其余地物类型两者分类精度相近;③GF-1多光谱和SAR数据的融合中,利用了小波变换进行图像融合,发现融合图像的喀斯特地貌突出,增加了地物特征的差异性。