编号 zgly0001747326
文献类型 期刊论文
文献题名 应用面向对象结合多时相哨兵-2A影像特征优选的毛竹林分布信息提取
作者单位 福建农林大学 三明学院 福建省资源环境监测与可持续经营利用重点实验室(三明学院)
母体文献 东北林业大学学报
年卷期 2023,51(1)
页码 61-68
年份 2023
分类号 S757.2
关键词 面向对象 哨兵-2A卫星 随机森林算法 特征优选 毛竹林分布信息
文摘内容 提出一种面向对象及随机森林特征优选的分类方法,为毛竹林分布信息提取提供参考。依据多时相哨兵-2A(Sentinel-2A)卫星数据提取光谱特征、植被指数及红边植被指数特征、纹理特征共69个特征;设计8种特征组合方案,方案1~5为多时相方案,其中方案1——光谱特征波段;方案2——光谱特征波段+植被指数特征+红边植被指数特征;方案3——光谱特征波段+纹理特征;方案4——光谱特征波段+植被指数特征+红边植被指数特征+纹理特征;方案5——光谱特征波段+植被指数特征+红边植被指数特征+纹理特征+特征优选;方案6、7和8为3个单时相影像分类,将其分类结果与其他多时相方案进行对比。采用随机森林算法进行特征优选的毛竹林分布信息提取。结果表明:(1)多时相Sentinel-2A数据的短波红外波段特征、红边波段特征及红边植被指数特征在分类时重要性程度高,对毛竹林分布信息提取贡献度大;(2)使用随机森林面向对象的分类方法能够有效的减少“椒盐现象”;(3)所有特征参与并由随机森林算法特征优选的方案5对毛竹林的分布信息提取效果最佳,总体精度为85.94%,Kappa系数为0.7852,表明随机森林算法能够进行特征优选同时保持精度较高的毛竹林提取效果。因此,面向对象结合多时相Sentinel-2A影像,利用随机森林进行特征优选和分类的方法能够较为有效地提取毛竹林分布信息。