数据资源: 中文期刊论文

基于特征优选的面向对象毛竹林分布信息提取



编号 zgly0001527843

文献类型 期刊论文

文献题名 基于特征优选的面向对象毛竹林分布信息提取

作者 高国龙  杜华强  韩凝  徐小军  孙少波  李雪建 

作者单位 浙江农林大学环境与资源学院浙江省森林生态系统碳循环与固碳减排重点实验室 

母体文献 林业科学 

年卷期 2016年09期

年份 2016 

分类号 S795.7  S771.8 

关键词 毛竹林  ReliefF算法  特征优选  面向对象  SPOT5遥感影像 

文摘内容 【目的】提出一种基于Relief F特征优选的面向对象分类方法,为解决面向对象森林资源遥感分类提供参考。【方法】以SPOT5高分辨率遥感影像为数据源,以浙江省安吉县山川乡为研究区,通过影像分割,选取8个地物类别的370个对象样本,并设置SPOT5影像每个波段的8个灰度共生矩阵纹理、每个波段及NDVI的平均值和标准差等42个对象特征。利用Relief F算法对设置的42个对象特征进行优选,采用面向对象的最近邻方法提取研究区毛竹林分布信息。为了比较基于最优特征的面向对象的分类结果,另采用CART决策树方法在相同的分割参数和训练样本前提下,通过样本构建决策树分类规则,对研究区进行分类并提取竹林信息。【结果】1)通过Relief F特征优选方法对分类特征进行优选,大幅提高了毛竹林样本的分类精度,与特征优选前相比,毛竹林样本分类精度由68%提高到88%,优选的红波段均值、绿波段均值、红波段均质纹理、红波段熵纹理和NDVI植被指数均值5个特征能够精确地提取研究区毛竹林分布信息,其用户精度和生产者精度分别达到97%和95%;2)基于CART决策树面向对象的研究区毛竹林用户精度和生产者精度均低于基于最优特征的最近邻分类结果,主要原因是CART决策树中毛竹林、针叶林和阔叶林之间的误分相对较高。【结论】Relief F算法特征优选时注重特征的分类能力,筛选的特征参与面向对象分割提取的毛竹林分布信息高于同类研究,可为面向对象多尺度分割森林资源遥感分类时特征的选取提供一个更为科学合理的方法。

相关图谱

扫描二维码