数据资源: 中文期刊论文

基于离散小波变换与遗传BP神经网络的木工刀具磨损状态监测



编号 zgly0001732893

文献类型 期刊论文

文献题名 基于离散小波变换与遗传BP神经网络的木工刀具磨损状态监测

作者 董伟航  胡勇  田广军  邱学海  郭晓磊 

作者单位 南京林业大学材料科学与工程学院  博深普锐高(上海)工具有限公司 

母体文献 中南林业科技大学学报 

年卷期 2021,41(06)

页码 157-166

年份 2021 

分类号 TS643  TP183 

关键词 木工刀具磨损状态监测  铣削参数  主轴功率  离散小波变换  遗传算法  BP神经网络 

文摘内容 【目的】为解决木质家具生产过程中木工刀具磨损造成的加工质量下降和生产成本升高的问题,需要对生产过程中的木工刀具磨损状态进行精确监测。【方法】提出了一种基于离散小波变换与遗传BP神经网络的木工刀具磨损状态监测方法。通过接入机床控制箱的功率传感器采集不同主轴转速、铣削深度和刀具磨损状态下的机床主轴功率信号,使用离散小波变换提取主轴功率信号的近似系数,将所提取的近似系数、主轴转速、铣削深度作为输入向量,刀具磨损作为输出向量,建立样本数据集,并将样本数据集输入BP神经网络中进行木工刀具磨损状态监测模型训练,同时使用遗传算法对BP神经网络的阈值和权值进行优化,实现对不同铣削条件下的木工刀具磨损状态进行精确监测。【结果】离散小波变换所提取主轴信号的近似系数能明显反映木工刀具磨损状态变化;在使用相同的样本数据集与遗传算法参数时,使用遗传BP神经网络所建立的木工刀具磨损状态监测模型的准确度可以达到100%,优于使用遗传概率神经网络建立监测模型的准确度。【结论】即使在样本数据集选取不佳时,本研究提出的监测方法仍然能对不同铣削条件下的木工刀具磨损状态进行精准监测,可以用于木质家具实际生产,达到提高木质家具加工质量、降低生产成本的目的。

相关图谱

扫描二维码