编号
zgly0001683689
文献类型
期刊论文
文献题名
全球海洋次表层温度异常遥感反演的季节时空变化特征
作者单位
福州大学卫星空间信息技术综合应用国家地方联合工程研究中心空间数据挖掘与信息共享教育部重点实验室
厦门大学—美国特拉华大学近海海洋研究与管理联合研究所
母体文献
遥感学报
年卷期
2019年05期
年份
2019
分类号
P731.11
TP79
关键词
遥感
全球海洋次表层
温度异常
随机森林
遥感反演
季节时空变化
文摘内容
卫星遥感反演海洋内部多时相、大尺度热力结构信息对于了解海洋内部复杂、多维的动力过程有重要意义。本文采用随机森林回归模型,利用卫星遥感观测的海表参量(海表高度异常(SSHA)、海表温度异常(SSTA)、海表盐度异常(SSSA)和海表风场异常(SSWA)),反演不同季节、不同深度层位(1000 m深度以上)的海洋次表层温度异常(STA),并用Argo实测数据作精度验证,采用均方根误差(RMSE)、归一化均方根误差(NRMSE)以及决定系数(R2)评价模型在全球及洋盆尺度上的反演精度。结果显示,全球海洋16个深度层位的平均R2在春、夏、秋、冬四季分别为0.53、0.60、0.54、0.66,NRMSE分别为0.051、0.031、0.043、0.044。随着季节的变化,模型反演性能有所波动。模型在印度洋的反演效果最佳,不同季节、不同深度层位上的平均R2和RMSE分别为0.71和0.18℃,而大西洋的反演精度最低,平均R2和RMSE分别为0.46和0.25℃。研究表明随机森林模型适用于全球不同季节的STA遥感反演,且在不同洋盆上均有较好的反演效果;不同季节上,上层STA有明显变化信号,空间异质性显著,但300 m以深,STA信号较弱且基本不随季节变化。本研究可为长时序、大尺度海洋内部参量信息遥感反演与重建提供依据,有助于进一步发展深海遥感方法。