编号 zgly0001649450
文献类型 期刊论文
文献题名 基于CNN的木材内部CT图像缺陷辨识
作者单位 山东建筑大学信息与电气工程学院
母体文献 林业科学
年卷期 2018年11期
年份 2018
分类号 TP391.41 TP183
关键词 木材 无损检测 卷积神经网络 图像辨识
文摘内容 【目的】为获取木材内部构造形态,提高木材内部缺陷识别率,依据获得的计算机断层扫描图像,提出一种基于卷积神经网络(CNN)的木材内部缺陷辨识方法,以实现木材的高效化自动分类。【方法】首先,利用课题组自行开发的计算机断层扫描系统,采集样本木材内部CT图像800幅;然后,对样本图像进行处理,随机选取700幅原始样本图像,从中截取出单个缺陷区域和正常木材断层区域样本图像20 000幅,并利用图像增强等算法将数据集扩充到70 000幅,标准化图像大小为28×28像素,分为正常、裂纹、虫眼和节子图像共4类,取60 000幅图像作为训练集,10 000幅图像作为测试集,剩余的100幅原始样本图像用于试验验证。【结果】通过60 000幅图像来训练网络模型,对测试集10 000幅图像进行分类,分类正确率达99.3%;利用训练得到的网络模型对100幅原始样本图像进行验证,平均分类正确率为95.87%。【结论】基于卷积神经网络的木材内部CT图像缺陷辨识算法,克服了传统识别方法图像预处理繁琐、训练方法复杂、训练参数过多、耗时过多等问题,具有精度高、复杂度小、鲁棒性较好等优点,且辨识正确率和辨识时间都比现行常规算法精准并用时短,是一种无损、高效、准确的辨识分类方法。