编号 zgly0001592357
文献类型 期刊论文
文献题名 基于SVM的东莞市土地利用/覆被自动分类误差来源与后处理
作者单位 中山大学地理科学与规划学院
母体文献 遥感技术与应用
年卷期 2017年05期
年份 2017
分类号 F301.2 TP751
关键词 卫星遥感 Landsat 城市化 土地利用/覆被变化 支持向量机
文摘内容 城市化是过去一个多世纪以来世界的发展趋势,城市化显著改变城市地区土地利用/覆被,并引起诸如水资源短缺,洪水灾害加重,水环境恶化,生态系统退化等负面效应,如何更加准确估算城市化引起的土地利用/覆被变化不仅是研究城市化过程特征的需要,也是研究城市化所引起的各种效应的需要,并且一直是国际遥感和应用界的研究热点和难点。东莞市是改革开放以来我国城市化速度最快的城市。为了给研究东莞市城市化过程及其各种效应提供高精度且完整的城市化过程的长系列土地利用/覆被变化数据,基于1987~2015年间12期Landsat遥感影像,采用SVM算法对东莞市土地利用/土地覆被变化数据进行了自动分类,并对分类误差来源进行了分析总结,提出了自动分类结果后处理方法,制备了东莞市城市化过程土地利用/覆被变化数据。12期遥感影像自动分类的总体精度为81.37%,Kappa系数为0.75;最终结果总体精度为86.87%,Kappa系数为0.83。通过土地利用变化特征分析,将东莞市城市化过程以1996年和2005年为节点,划分为起步发展、快速发展和稳定发展3个阶段。