编号 zgly0001572917
文献类型 期刊论文
文献题名 综合应用多源遥感数据的面向对象土地覆盖分类方法
作者单位 中国林业科学研究院资源信息研究所
母体文献 林业科学
年卷期 2018年02期
年份 2018
分类号 S771
关键词 多源数据 GF-1宽幅多光谱数据 MODIS NDVI遥感数据 随机森林 面向对象 土地覆盖分类
文摘内容 【目的】针对国家森林资源宏观监测业务对区域森林资源空间分布信息的迫切需求,发展一种基于国家森林资源连续清查固定样地数据,可充分发挥GF-1宽幅多光谱数据、MODIS遥感数据相应空间和时间分辨率优势的面向对象土地覆盖分类方法,以提高林地和森林资源的监测精度和自动化程度。【方法】以黑龙江省小兴安岭某林区为研究区,主要数据源包括GF-1宽幅多光谱数据、MODIS NDVI(250 m,8天合成)时间序列遥感数据、国家森林资源连续清查固定样地数据以及少量外业实地调查数据等。首先,基于GF-1宽幅多光谱数据进行多尺度影像分割,将研究区划分为许多区域性的分割对象;然后,以分割对象为分析单元,分别提取GF-1宽幅多光谱遥感影像的光谱特征、纹理特征、形状特征等以及MODIS NDVI时间序列遥感数据的时序特征,并采用随机森林算法进行特征选择;最后,利用训练样本建立基于分类回归树分类器完成面向对象的土地覆盖分类方法研究,分别比较单一GF-1 16 m宽幅多光谱数据、单一MODIS NDVI时间序列遥感数据以及综合多源数据的分类结果,并基于混淆矩阵对分类结果进行分析。【结果】精度检验和分析结果表明,面向对象的综合多源遥感数据分类方法总体分类精度达89.46%,Kappa系数为0.874,明显优于仅基于GF-1宽幅多光谱数据、MODIS NDVI时间序列遥感数据的分类方法。【结论】综合应用多源遥感数据的面向对象土地覆盖分类方法适用于综合GF-1与GF-4数据的土地覆盖类型分别制图,可有效提高主要土地覆盖类型的分类精度。针对国家森林资源连续清查的业务需求和特点,本文所发展的方法在分类对象生成、特征提取、特征选择、分类器训练和精度检验等关键环节均进行了优化设计,有利于提高森林资源连续清查业务中主要林地类型遥感分类制图的自动化、标准化程度。