编号
zgly0001687393
文献类型
期刊论文
文献题名
基于卷积神经网络的树种识别研究
作者单位
东北林业大学理学院
母体文献
森林工程
年卷期
2020年01期
年份
2020
分类号
TP183
TP391.41
S757
关键词
卷积神经网络
树皮纹理图像
树种识别
文摘内容
由于森林资源的重要性和不可替代性,准确识别树种是研究和保护森林资源的基础。本研究采用ROI(感兴趣区域)截取及直方图均衡化的图像增强方法对原始数据集进行预处理,基于调整和优化的Lenet 5卷积神经网络模型结构,对无干扰背景下的水曲柳、家榆和白桦等5种典型东北林木的树皮纹理RGB图像自动提取特征,进行分类识别。结果表明,该卷积神经网络对5种树种的识别正确率达到95.8%。为林业资源管理节约人工定义树皮纹理特征的成本,为计算机自动识别树种提供更高效、更准确和鲁棒性更强的方法。