编号 zgly0001727137
文献类型 期刊论文
文献题名 基于PROSAIL模型和多角度遥感数据的森林叶面积指数反演
作者单位 南京林业大学南方现代林业协同创新中心 长江航道工程局有限责任公司华东分公司 南京市水务局
母体文献 林业科学
年卷期 2021,57(4)
页码 90-106
年份 2021
分类号 S771.8
关键词 叶面积指数 多角度PROBA/CHRIS遥感数据 PROSAIL模型 随机森林模型
文摘内容 【目的】基于多角度PROBA/CHRIS遥感数据和野外实测数据,结合PROSAIL模型和随机森林模型反演森林叶面积指数(LAI),以提高植被LAI遥感反演精度,为区域土壤侵蚀遥感定量监测提供新的方法和模型。【方法】以南京市紫金山和幕府山为研究区,采用野外调查、遥感影像、辐射传输模型与数学模型相结合的方法,构建基于PROSAIL模型和多角度PROBA/CHRIS遥感数据的随机森林LAI反演模型,对PROSAIL模型进行敏感性分析和适用性评价,确定最佳LAI反演模型,并利用地面实测LAI进行精度验证和评价。【结果】PROSAIL模型中各输入参数敏感性大小为LAI》叶绿素a、b含量Cab》叶片干物质含量Cm》热点参数SL》叶片内部结构参数N》等效水厚度Cw;模拟的冠层反射率精度大小为0°》36°》-36°》55°》-55°。单角度LAI反演模型中,前向观测角55°精度最高,其决定系数(R2)、均方根误差(RMSE)和平均绝对百分误差(MAPE)分别为0.9157、0.2357和0.0426;相比于传统垂直观测,55°模型的R2提高0.75%,RMSE和MAPE分别降低3.76%和5.12%;相比于非线性回归模型,单角度随机森林LAI反演模型的R2提高0.7%,RMSE和MAPE分别降低15.40%和11.98%;单角度LAI反演模型精度由高到低依次为55°、36°、0°、-55°、-36°。多角度LAI反演模型中,3角度组合(0°、36°、55°)LAI反演精度最高,其R2、RMSE和MAPE分别为0.9184、0.2319和0.0415,相比于单角度55°,R2提高0.29%,RMSE和MAPE分别降低1.61%和2.58%;相比于传统垂直观测,3角度组合模型的R2提高1.05%,RMSE和MAPE分别降低5.31%和7.57%;相比于非线性回归模型,多角度随机森林LAI反演模型的R2提高0.79%,RMSE和MAPE分别降低6.72%和9.19%。紫金山西部区域LAI介于0.44~6.70之间,林地LAI均值为3.04;紫金山西部林地LAI整体上呈北部和南部高、中间低的空间分布格局。【结论】最佳LAI反演模型为基于3角度组合(0°、36°、55°)的随机森林LAI反演模型;一方面,增加观测角度可提供更多植被冠层结构信息,LAI反演精度随观测角度增加而增加,但另一方面,观测角度过多会使像元空间重采样、叶片阴影和土壤阴影等问题带来更多不确定性,LAI反演精度反而下降;无论是单角度还是多角度数据,随机森林LAI反演模型精度均高于非线性回归模型,随机森林模型能够明显提高LAI反演精度,适用于区域植被LAI反演;多角度遥感数据能够反映森林立体结构信息和地物多维空间结构特征,显著改善传统垂直观测数据反演LAI精度较低的问题,从而有效提高植被LAI反演精度。