编号
zgly0001006009
文献类型
期刊论文
文献题名
基于随机森林算法的农耕区土地利用分类研究
作者单位
吉林大学地球探测科学与技术学院
中国科学院行星科学重点实验室
西南林业大学林学院
母体文献
农业机械学报
年卷期
2016(1)
页码
297-303
年份
2016
关键词
土地利用分类
农耕区
随机森林算法
多源信息
特征选择
文摘内容
基于随机森林算法,采用多季节、多时相光谱信息、纹理信息和地形信息进行分类研究,选出最佳分类方案对农耕区土地利用信息进行提取,并利用随机森林算法对所有特征变量进行降维,将降维后的变量分别用于随机森林、支持向量机和最大似然分类法,分析不同分类方法对农耕区土地利用类型提取的适用性。研究结果表明:基于随机森林算法的多源信息综合分类方案进行土地利用信息提取效果最佳,总体精度85.54%,Kappa系数0.835 9;利用随机森林算法进行特征选择可以在有效降低数据维度的同时保证分类精度;3种分类方法中,随机森林算法总体分类精度81.08%,分别较支持向量机和最大似然法高9.46%和5.27%。