数据资源: 中文期刊论文

基于多源数据的根河实验区生物量反演研究



编号 zgly0001527498

文献类型 期刊论文

文献题名 基于多源数据的根河实验区生物量反演研究

作者 李春梅  张王菲  李增元  陈尔学  田昕 

作者单位 西南林业大学林学院  中国林业科学研究院资源信息研究所 

母体文献 北京林业大学学报 

年卷期 2016年03期

年份 2016 

分类号 S718.556  S771.8 

关键词 森林地上生物量  多元线性逐步回归  k-最近邻  单传感器遥感数据  多传感器遥感数据 

文摘内容 森林是陆地生态系统的重要组成部分,精确估测森林地上生物量能够减少陆地生态系统碳储量的不确定性。本文以内蒙古大兴安岭根河实验区为研究区,基于森林样地调查数据、Landsat 8 OLI、机载P-波段Pol SAR以及ASTER GDEM数据,分别采用多元线性逐步回归法和基于随机森林算法(Random Forest,RF)进行特征优化选择后的k-最近邻(k-nearest neighbors,k-NN)法对研究区森林地上生物量(above-ground biomass,AGB)进行估测,对比验证采用不同类型数据(单传感器数据和多传感器数据)时2种方法的反演结果来寻求森林AGB估测的最优方法和输入因子,最后利用最优的估测方法来反演整个研究区的森林AGB,生成根河实验区的森林AGB等级分布图。结果表明:对于多元线性逐步回归和k-NN 2种不同的方法,森林AGB的反演都表现出较为一致的结果,即采用多传感器遥感数据(Landsat 8 OLI和机载P-波段PolSAR数据)比采用单传感器遥感数据估算的森林AGB精度要高;而在同时采用多传感器遥感数据进行森林AGB的反演中,k-NN算法的估测结果(R~2=0.65,RMSE=17.49 t/hm~2)明显优于多元线性逐步回归算法(R~2=0.36,RMSE=22.08 t/hm~2)的估测结果。显然,多源数据协同反演森林AGB可以充分利用每种传感器的优点,提高遥感估测森林AGB的能力;与多元逐步回归方法相比,k-NN算法能够更多地考虑到森林参数同光谱值之间的非线性依赖关系,且能够避免发生过学习现象和样本不平衡问题。

相关图谱

扫描二维码