数据资源: 中文期刊论文

星载大光斑LiDAR与HJ-1A高光谱数据联合估测区域森林地上生物量



编号 zgly0001527928

文献类型 期刊论文

文献题名 星载大光斑LiDAR与HJ-1A高光谱数据联合估测区域森林地上生物量

作者 邱赛  邢艳秋  徐卫华  丁建华  田静 

作者单位 东北林业大学工程技术学院  中国科学院生态环境研究中心 

母体文献 生态学报 

年卷期 2016年22期

年份 2016 

分类号 S718.556 

关键词 星载大光斑Li DAR  ICESat-GLAS波形数据  HJ-1A高光谱数据  森林最大树高  森林郁闭度  森林地上生物量  支持向量回归算法 

文摘内容 以吉林省汪清林业局经营区为研究区,利用HJ-1A/HSI高光谱数据和ICESat-GLAS波形数据,估测区域森林地上生物量。从平滑后的GLAS波形数据中提取波形长度W和地形坡度参数TS,建立GLAS森林最大树高估测模型;从GLAS波形数据中提取能量参数I(植被回波能量Ev和回波总能量E之比),建立GLAS森林郁闭度估测模型;利用GLAS估测的森林最大树高和森林郁闭度联合建立森林地上生物量模型。由于GLAS呈离散条带状分布,无法实现区域估测,因此研究将GLAS波形数据与HJ-1A/HSI高光谱数据联合,基于支持向量回归机算法实现森林地上生物量区域估测,得到研究区森林地上生物量分布图。研究结果显示,基于W和TS建立的GLAS森林最大树高估测模型的adj.R~2=0.78,RMSE=2.51m,模型验证的adj.R~2=0.85,RMSE=1.67m。地形坡度参数TS能够有效的降低地形坡度的影响;当林下植被高度为2m时,得到的基于参数I建立的GLAS森林郁闭度估测模型效果最好,模型的adj.R~2=0.64,RMSE=0.13,模型验证的adj.R~2=0.65,RMSE=0.12。利用森林最大树高和森林郁闭度建立的森林地上生物量模型的adj.R~2=0.62,RMSE=10.88 t/hm~2,模型验证的adj.R~2=0.60,RMSE=11.52 t/hm~2。基于支持向量回归机算法,利用HJ-1A/HSI和GLAS数据建立的森林地上生物量SVR模型,生成了森林地上生物量分布图,利用野外数据对得到的分布图进行验证,验证结果显示森林地上生物量估测值与实测值存在很强的线性关系(adj.R~2=0.62,RMSE=11.11 t/hm~2),能够满足林业应用的需要。因此联合ICESat-GLAS波形数据与HJ-1A高光谱数据,能够提高区域森林地上生物量的估测精度。

相关图谱

扫描二维码