编号
zgly0001527928
文献类型
期刊论文
文献题名
星载大光斑LiDAR与HJ-1A高光谱数据联合估测区域森林地上生物量
作者单位
东北林业大学工程技术学院
中国科学院生态环境研究中心
母体文献
生态学报
年卷期
2016年22期
年份
2016
分类号
S718.556
关键词
星载大光斑Li DAR
ICESat-GLAS波形数据
HJ-1A高光谱数据
森林最大树高
森林郁闭度
森林地上生物量
支持向量回归算法
文摘内容
以吉林省汪清林业局经营区为研究区,利用HJ-1A/HSI高光谱数据和ICESat-GLAS波形数据,估测区域森林地上生物量。从平滑后的GLAS波形数据中提取波形长度W和地形坡度参数TS,建立GLAS森林最大树高估测模型;从GLAS波形数据中提取能量参数I(植被回波能量Ev和回波总能量E之比),建立GLAS森林郁闭度估测模型;利用GLAS估测的森林最大树高和森林郁闭度联合建立森林地上生物量模型。由于GLAS呈离散条带状分布,无法实现区域估测,因此研究将GLAS波形数据与HJ-1A/HSI高光谱数据联合,基于支持向量回归机算法实现森林地上生物量区域估测,得到研究区森林地上生物量分布图。研究结果显示,基于W和TS建立的GLAS森林最大树高估测模型的adj.R~2=0.78,RMSE=2.51m,模型验证的adj.R~2=0.85,RMSE=1.67m。地形坡度参数TS能够有效的降低地形坡度的影响;当林下植被高度为2m时,得到的基于参数I建立的GLAS森林郁闭度估测模型效果最好,模型的adj.R~2=0.64,RMSE=0.13,模型验证的adj.R~2=0.65,RMSE=0.12。利用森林最大树高和森林郁闭度建立的森林地上生物量模型的adj.R~2=0.62,RMSE=10.88 t/hm~2,模型验证的adj.R~2=0.60,RMSE=11.52 t/hm~2。基于支持向量回归机算法,利用HJ-1A/HSI和GLAS数据建立的森林地上生物量SVR模型,生成了森林地上生物量分布图,利用野外数据对得到的分布图进行验证,验证结果显示森林地上生物量估测值与实测值存在很强的线性关系(adj.R~2=0.62,RMSE=11.11 t/hm~2),能够满足林业应用的需要。因此联合ICESat-GLAS波形数据与HJ-1A高光谱数据,能够提高区域森林地上生物量的估测精度。