数据资源: 中文期刊论文

基于深度学习的树种图像自动识别



编号 zgly0001685489

文献类型 期刊论文

文献题名 基于深度学习的树种图像自动识别

作者 刘嘉政  王雪峰  王甜 

作者单位 中国林业科学研究院资源信息研究所 

母体文献 南京林业大学学报(自然科学版 

年卷期 2020年01期

年份 2020 

分类号 S722  TP391.41  TP18 

关键词 深度学习方法  树种图像  卷积神经网络  自动识别 

文摘内容 【目的】为了探究深度学习方法用于林业树种图像智能识别的可行性,提出一种基于深度学习方法的自动识别树种新方法。在Tensor Flow框架下,对卷积神经网络(CNN)模型进行改进,对7类树种图像进行自动识别研究。【方法】首先,在图像库建立时,为增加特征选择多样性,选择树木的树皮和树叶图像,保留自然背景;另外,考虑到同一树种在不同树龄条件下树皮图像存在差异,因此加入不同树龄的树皮图像,并用胸径指标来表示树龄大小。其次,对每类树种图像随机挑选100张作为测试集,剩余数据集全部作为训练集。通过反复试验比较不同CNN结构设置、卷积层数量、全连接层层数、学习率等对结果的影响。采用Adam算法代替传统的随机梯度下降(SGD)算法,对模型进行优化,用指数衰减法对学习率进行调节,在交叉熵函数中加入L2正则项对权重进行惩罚,并采用Dropout策略和Re LU激励函数,以避免训练过程中过拟合现象。最后,确定适合试验要求的13层CNN结构,同时比较深度学习方法和传统人工特征识别方法的差异,与已有的树种图像识别方法做对比。【结果】提出的13层树种图像识别模型,对训练集和测试集取得了理想的识别效果,识别率分别为96.78%、91. 89%,在未参与训练的验证集上取得了96%的平均准确率。相对于已有的人工特征识别方法,所提出的方法识别效率和准确度更高。【结论】基于改进的卷积神经网络树种识别模型识别效果明显高于传统方法,说明所提出的方法能够应用于树种识别,可为林业树种图像自动识别提供一条新思路。

相关图谱

扫描二维码