数据资源: 中文期刊论文

基于FY4遥感数据的森林火灾判别研究



编号 zgly0001717796

文献类型 期刊论文

文献题名 基于FY4遥感数据的森林火灾判别研究

作者 熊得祥  谭三清  张贵  吴鑫  杨志高 

作者单位 中南林业科技大学林学院 

母体文献 中南林业科技大学学报 

年卷期 2020年10期

年份 2020 

分类号 S762.2 

关键词 风云四号  森林火灾判别  决策树模型  支持向量机  光谱指数 

文摘内容 【目的】为提高森林火灾监测的时效性,利用我国新一代静止气象卫星FY4的遥感数据,研究对森林火灾监测的技术和方法。【方法】以贵州省为研究区,利用FY4遥感数据,对FY4的14个波段进行火点样本的波段特征、波段间相关系数、波段组合OIF指数计算,并对判别森林火灾相关的云、水体、林地、火点4类地物进行光谱特征分析,采用支持向量机对OIF指数排名前10的波段组合进行地物分类精度验证,筛选出最适合进行森林火灾判别的波段组合。构建最小距离模型、马氏距离模型、支持向量机以及决策树模型进行森林火灾判别,利用中国森林防火网森林火灾数据,以判别精度(D)、多分误差(M)、漏分误差(O)为模型的评价指标,对4个模型进行精度验证,筛选出最优的森林火灾判别模型。【结果】1)筛选出最适合进行森林火灾判别的波段组合是(B7,B8,B12),其支持向量机地物分类精度为99.21%,Kappa系数为0.855,是进行森林火灾判别地物分类精度最高的波段组合,与最优波段组合筛选结果一致。2)4个模型的森林火灾判别精度都超过了85%,其中决策树模型判别森林火灾的精度为100%。【结论】基于FY4遥感数据决策树模型的构建,提高了森林火灾监测的时效性,对保护森林资源、减少人民生命财产损失具有重要的意义。

相关图谱

扫描二维码