编号 zgly0001745985
文献类型 期刊论文
文献题名 深度卷积神经网络的遥感植被检测方法
作者单位 南京林业大学信息科学技术学院 哈尔滨理工大学机械动力工程学院
母体文献 南京林业大学学报:自然科学版
年卷期 2022,46(4)
页码 185-193
年份 2022
分类号 TP79 S718
关键词 植被检测 深度学习 卷积网络结构 图像分类
文摘内容 【目的】植被检测是城市生态研究的重要手段,然而由于遥感图像中植被存在阴影区域、遮挡区域以及色彩上的畸变等,导致当前的植被检测精度较低。基于遥感卫星影像,采用深度学习技术快速有效地检测出城市中的植被区域,为植被资源统计等相关研究提供依据。【方法】选用深度卷积神经网络模型,对高分辨率遥感影像中的植被区域进行检测。对不同的优化器,通过设置不同的卷积核大小,对精度进行对比分析。最后对网络层数进行研究,对设置合适网络层数进行分析,用构造的深度卷积神经网络在实验数据上进行植被区域检测。【结果】利用卷积神经网络处理二维图像时,无需手动提取特征,进行简单少量的预处理后,直接把图像输入到CNN模型中进行训练,即可实现图片的识别分类功能。降低了预处理的难度,同时局部感知和权值共享大幅度地减少了参数量,加快了计算速度。次抽样还能保证图像处理后的平移、旋转、缩放和拉伸的不变性。解决了传统方法计算量和样本量大、结构复杂以及费时的缺点。在采集到的高分辨率紫金山区域的遥感图像中,通过设计的多层卷积神经网络模型对区域中的植被资源进行分析,对比和研究不同的优化器、卷积核和网络层数,植被检测精度达到95.4%,明显高于当前众多植被检测算法。【结论】在深度学习中,目标检测的精度依赖于网络的结构设置,通过对优化器、卷积核以及网络层数进行设定,可以明显提高目标检测效率和精度。