编号
zgly0001683710
文献类型
期刊论文
文献题名
基于DenseNet的无人机光学图像树种分类研究
作者单位
福建农林大学计算机与信息学院
福建农林大学林学院
福建农林大学林学博士后流动站
福建省高校生态与资源统计重点实验室
母体文献
遥感技术与应用
年卷期
2019年04期
年份
2019
分类号
TP751
S718
关键词
无人机
深度学习
树种识别
光学影像
文摘内容
利用无人机航拍获得光学影像数据,结合深度学习理论,建立树种识别模型,以期为大规模树种识别提供一种新的方式。首先以福建安溪县为例,采用无人机获取20 m及40 m高度的航拍影像。其次,以树种为对象,对航拍影像进行分割,获得12种树种影像。最后,结合深度学习理论,采用DenseNet卷积神经网络建立树种识别模型,探讨不同航拍高度以及不同网络深度对树种识别的影响。结果表明:不同航拍高度的树种识别模型,其分类精度均达80%以上,最高精度为87.54%。从航拍影像解析度分析,随着航拍影像解析度的下降,模型识别精度呈现下降趋势,以20 m航拍影像数据建构的树种识别模型,其分类精度高于40 m模型;从模型网络深度分析,随着模型网络层数的增加,模型分类精度出现下降现象,DenseNet121模型分类精度高于DenseNet169模型分类精度。综上所述,基于无人机航拍影像,结合深度卷积神经网络,提出了新的树种识别方式,并以安溪县森林树种识别为例证明了该分类框架的有效性。