数据资源: 科信所期刊全文

基于二代测序的集群分离分析法在木本植物基因定位中的应用



编号 lyqk008179

中文标题 基于二代测序的集群分离分析法在木本植物基因定位中的应用

作者 梁晓涵  刘婷婷  张烨  程堂仁  王佳  张启翔  潘会堂 

作者单位 花卉种质创新与分子育种北京市重点实验室, 国家花卉工程技术研究中心, 城乡生态环境北京实验室, 北京林业大学园林学院, 北京 100083

期刊名称 世界林业研究 

年份 2020 

卷号 33

期号 2

栏目编号 1

栏目名称 专题论述 

中文摘要 植物重要性状相关的数量性状基因座(QTL)和基因定位一直是结构基因组学的研究重点,也是遗传机制解析和分子育种的重要基础。木本植物具有重要的经济、生态价值,但用于其研究的传统基因定位方法存在耗时长、工作量大、通量低、成本高且效果不佳等问题。近年来,由于测序技术发展日新月异,基于二代测序技术的集群分离分析法(NGS-based BSA)开始应用于木本植物中。与传统的集群分离分析法(BSA)技术相比,NGS-based BSA周期短、效率高,能对质量或数量性状进行精确定位,在木本植物遗传学和组学研究方面具有广阔的应用前景。文中简述了BSA的发展历程和研究策略,综述了其在木本植物研究中的进展,分析了NGS-based BSA的优势及存在的问题,展望了其在木本植物遗传学、组学和种质改良领域中的应用潜力。

关键词 集群分离分析法  测序技术  数量性状基因座  基因定位  木本植物 

基金项目 北京市科技计划课题“基于组学的北京特色花灌木优良新品种培育及应用”(Z181100002418006);国家自然科学基金“利用转录组测序技术挖掘调控紫薇株高性状的关键基因”(31470695)。

英文标题 Application of Next-generation Sequencing Based Bulked Segregant Analysis in Gene Mapping of Woody Plants

作者英文名 Liang Xiaohan, Liu Tingting, Zhang Ye, Cheng Tangren, Wang Jia, Zhang Qixiang, Pan Huitang

单位英文名 Beijing Key Laboratory of Ornamental Plants Germplasm Innovation&Molecular Breeding;National Engineering Research Center for Floriculture;Beijing Laboratory of Urban and Rural Ecological Environment;School of Landscape Architecture, Beijing Forestry University, Beijing 100083, China

英文摘要 Mapping of functional QTLs and genes relevant to plant traits is always the focus of structural genomics, which also lays a solid foundation for the genetic mechanism deciphering and molecular breeding. Woody plants have significant economic and ecological values. However, the common genetic mapping approaches adopted for woody plant analysis are time-consuming, laboring, low-fluxes, costly and inefficient. Recently, next-generation sequencing-based bulked segregant analysis (BSA) has been used in woody plant QTL and gene mapping with the rapid development of the sequencing technology. Compared with conventional BSA, it has the advantages like short time period, high efficiency and accurate positioning of quality or quantitative traits, which has great potential to be used in the genetics and genomics of woody plants. The paper summarizes the development and strategies of BSA, reviews its latest research progresses in woody plants, analyzes its advantages and extant problems, and prospects its potential to be applied in genetics, genomics and germplasm improvement in woody plants.

英文关键词 BSA;sequencing technology;QTL;gene mapping;woody plant

起始页码 54

截止页码 61

投稿时间 2019-06-11

最后修改时间 2019-11-21

作者简介 梁晓涵,女,硕士研究生,研究方向为花卉分子生物学,E-mail:15501110321@163.com。

通讯作者介绍 潘会堂,男,教授,博士生导师,主要从事园林植物与观赏园艺研究,E-mail:htpan@bjfu.edu.cn。

E-mail 潘会堂,htpan@bjfu.edu.cn

分类号 S718.46

DOI 10.13348/j.cnki.sjlyyj.2019.0114.y

参考文献 [1] DARVASI A, SOLLER M. Selective DNA pooling for determination of linkage between a molecular marker and a quantitative trait locus[J]. Genetics, 1994, 138(4):1365-1373.
[2] MAGWENE P M, WILLIS J H, KELLY J K. The statistics of bulk segregant analysis using next generation sequencing[J]. Plos Computional Biology, 2011, 7(11):e1002255. DOI:10.1371/journal.pcbi.1002255.
[3] MITCHELL S E, ELSHIRE R J, GLAUBITZ J, et al. Simple genotyping-by-sequencing (GBS) approach for high diversity species[C]. International Plant&Animal Genome Conference XX, 2012.
[4] MICHELMORE R W, PARAN I, KESSELI R V. Identification of markers linked to disease-resistance genes by bulked segregant analysis:a rapid method to detect markers in specific genomic regions by using segregating populations[J]. Proceedings of the National Academy of Sciences of the United States of America, 1991, 88(21):9828-9832.
[5] WANG B W, DU Q Z, YANG X H, Identification and characterization of nuclear genes involved in photosynthesis in Populus[J]. BMC Plant Biology, 2014, 14(81):1471-2229.
[6] AUSTIN R S, VIDAURRE D, STAMATIOU G, et al. Next-generation mapping of Arabidopsis genes[J]. Plant Journal, 2011, 67(4):715-725.
[7] SCHNEEBERGER K, OSSOWSKI S, LANZ C, et al. SHOREmap:simultaneous mapping and mutation identification by deep sequencing[J]. Nature Methods, 2009, 6(8):550-551.
[8] TAKAGI H, ABE A, YOSHIDA K, et al. QTL-seq:rapid mapping of quantitative trait loci in rice by whole genome resequencing of DNA from two bulked populations[J]. Plant Journal, 2013, 74(1):174-183.
[9] ABE A, KOSUGI S, YOSHIDA K, et al. Genome sequencing reveals agronomically important loci in rice using MutMap[J]. Nature Biotechnology, 2012, 30(2):174-178.
[10] TAKAGI H, UEMURA A, YAEGASHI H, et al. MutMap-Gap:whole-genome resequencing of mutant F2 progeny bulk combined with de novo assembly of gap regions identifies the rice blast resistance gene Pii[J]. New Phytologist, 2013, 200(1):276-283.
[11] FEKIH R, TAKAGI H, TAMIRU M, et al. Mutmap plus:genetic mapping and mutant identification without crossing in rice[J]. PLos One, 2013, 8(7):e68529. DOI:10.1371/journal.pone.0068529.
[12] WANG H, ZHANG Y X, SUN L P, et al. WB1, a regulator of endosperm development in rice, identified by a modified mutmap method[J]. International Journal of Molecular Sciences, 2018, 19(8):2159. DOI:10.3390/ijms19082159.
[13] LIU S Z, YEH C T, TANG H M, et al. Gene mapping via bulked segregant RNA-Seq (BSR-Seq)[J]. Plos One, 2012, 7(5):e36406. DOI:10.1371/journal.pone.0036406.
[14] ZHANG H, WANG X, PAN Q, et al. QTG-Seq accelerates QTL fine mapping through QTL partitioning and whole-genome sequencing of bulked segregant samples[J]. Molecular Plant, 2019, 12(3):426-437.
[15] YANG J L, JIANG H Y, YEH C T, et al. Extreme-phenotype genome-wide association study (XP-G-WAS):a method for identifying trait-associated variants by sequencing pools of individuals selected from a diversity panel[J]. Plant Journal, 2015, 84(3):587-596.
[16] YU J M, HOLLAND J B, MCMULLEN M D, et al. Genetic design and statistical power of nested association mapping in maize[J]. Genetics, 2008, 178(1):539-551.
[17] GNAN S, PRIEST A, KOVER P X. The genetic basis of natural variation in seed size and seed number and their trade-off using Arabidopsis thaliana MAGIC lines[J]. Genetics, 2014, 198(4):1751-1758.
[18] KOFLER R, OROZCO-TERWENGEL P, DE MAIO N, et al. PoPoolation:a toolbox for population genetic analysis of next generation sequencing data from pooled individuals[J]. Plos One, 2011, 6(1):e15925. DOI:10.1371/journal.pone.0015925.
[19] NGUYEN K L, GRONDIN A, COURTOIS B, et al. Next-generation sequencing accelerates crop gene discovery[J]. Trends Plant Science, 2019, 24(3):263-274.
[20] TABOR G M, KUBISIAK T L, KLOPFENSTEIN N B, et al. Bulked segregant analysis identifies molecular markers linked to Melampsora medusae resistance in Populus deltoides[J]. Phytopathology, 2000, 90(9):1039-1042.
[21] MISSIAGGIA A A, PIACEZZI A L, GRATTAPAGLIA D. Genetic mapping of Eef1, a major effect QTL for early flowering in Eucalyptus grandis[J]. Tree Genetics&Genomes, 2005, 1(2):79-84.
[22] CHAVEZ D J, CHAPARRO J X. Identification of markers linked to seedlessness in Citrus kinokuni Hort. ex Tanaka and its progeny using bulked segregant analysis[J]. Hortscience, 2011, 46(5):693-697.
[23] 刘阳.紫薇微卫星标记开发及矮化性状的分子标记[D].北京:北京林业大学, 2013.
[24] 吴俊,束怀瑞,张开春,等.桃AFLP技术体系的优化及集群分离分析研究[J].西北植物学报, 2005, 25(3):430-435.
[25] 宋伟,王彩虹,田义轲,等.梨果实形状的SSR分子标记[J].青岛农业大学学报, 2010, 27(3):213-215.
[26] 田义轲,王彩虹,张继澍,等.一个与苹果柱型基因Co连锁的RAPD标记[J].西北植物学报, 2003, 23(2):2176-2179.
[27] WANG B W, DU Q Z, YANG X H, et al. Identification and characterization of nuclear genes involved in photosynthesis in Populus[J]. BMC Plant Biology, 2014, 14:81. DOI:10.1186/1471-2229-14-81.
[28] NEVES L G, DAVIS J M, BARBAZUK W B, et al. A high-density gene map of loblolly pine (Pinus taeda L.) based on exome sequence capture genotyping[J]. G3-Genes Genomes Genetics, 2014, 4(1):29-37.
[29] LIND M, KALLMAN T, CHEN J, et al. A Picea abies linkage map based on SNP markers identifies QTLs for four aspects of resistance to Heterobasidion parviporum infection[J]. Plos One, 2014, 9(7):e101049. DOI:10.1371/journal.pone.0101049.
[30] GION J M, CHAUMEIL P, PLOMION C. EucaMaps:linking genetic maps and associated QTLs to the Eucalyptus grandis genome[J]. Tree Genetics&Genomes, 2015, 11(1):795. DOI:10.1007/s11295-014-0795-0.
[31] BILLOTTE N, MARSEILLAC N, RISTERUCCI A M, et al. Microsatellite-based high density linkage map in oil palm (Elaeis guineensis Jacq.)[J]. TAG Theoretical and applied genetics Theoretische und Angewandte Genetik, 2005, 110(4):754-765.
[32] MATHEW L S, SPANNAGL M, AL-MALKI A, et al. A first genetic map of date palm (Phoenix dactylifera) reveals long-range genome structure conservation in the palms[J]. BMC Genomics, 2014, 15(1):285. DOI:10.3390/ijms19082159.
[33] JIANG T B, ZHOU B R, GAO F L, et al. Genetic linkage maps of white birches (Betula platyphylla Suk. and B. pendula Roth) based on RAPD and AFLP markers[J]. Molecular Breeding, 2011, 27(3):347-356.
[34] AN Z, ZHAO Y, ZHANG X, et al. A high-density genetic map and QTL mapping on growth and latex yield-related traits in Hevea brasiliensis Müll. Arg[J]. Industrial Crops and Products, 2019, 132:440-448. DOI:10.1016/j.indcrop.2019.03.002.
[35] LI Y, WANG D W, LI Z Q, et al. A molecular genetic linkage map of Eucommia ulmoides and quantitative trait loci (QTL) analysis for growth traits[J]. International Journal of Molecular Sciences, 2014, 15(2):2053-2074.
[36] XIA Z Q, ZHANG S K, WEN M F, et al. Construction of an ultrahigh-density genetic linkage map for Jatropha curcas L. and identification of QTL for fruit yield[J]. Biotechnology for Biofuels, 2018, 11:3. DOI:10.1186/s13068-017-1004-9.
[37] PICULELL B J, MARTINEZ-GARCIA P C, NELSON C D, et al. Association mapping of ectomycorrhizal traits in loblolly pine (Pinus taeda L.)[J]. Molecular Ecology, 2019, 28(8):2088-2099.
[38] BABU B K, MATHUR R K, RAVICHANDRAN G. Genome-wide association study (GWAS) for stem height increment in oil palm (Elaeis guineensis) germplasm using SNP markers[J]. Tree Genetics&Genomes, 2019, 15(3):40. DOI:10.1007/s11295-019-1349-2.
[39] FORCADA C F I, GUAJARDO V, CHIN-WO S R, et al. Association mapping analysis for fruit quality traits in Prunus persica using SNP markers[J]. Front Plant Science, 2019, 9:2005. DOI:10.3389/fpls.2018.02005.
[40] ZHANG H, FAN X C, ZHANG Y, et al. Identification of favorable SNP alleles and candidate genes for seedlessness in Vitis vinifera L. using genome-wide association mapping[J]. Euphytica, 2017, 213(7):136. DOI:10.1007/s10681-017-1919-z.
[41] ZHANG Q, ZHANG H, SUN L, et al. The genetic architecture of floral traits in the woody plant Prunus mume[J]. Nature Communications, 2018, 9(1):1-12.
[42] SCHULZ D F, SCHOTT R T, VOORRIPS R E, et al. Genome-wide association analysis of the anthocyanin and carotenoid contents of rose petals[J]. Front Plant Science, 2016, 7:1798. DOI:10.3389/fpls.2016.01798.
[43] DEVEY M E, DELFINO-MIX A, KINLOCH B B, et al. Random amplified polymorphic DNA markers tightly linked to a gene for resistance to white pine blister rust in sugar pine[J]. Proceedings of the National Academy of Sciences of the United States of America, 1995, 92:2066-2070.
[44] BAI B, WANG L, ZHANG Y J, et al. Developing genome-wide SNPs and constructing an ultrahigh-density linkage map in oil palm[J]. Science Report, 2018, 8:691. DOI:10.1038/s41598-017-18613-2.
[45] WANG G L, PATERSON A H. Assessment of DNA pooling strategies for mapping of QTLs[J]. Theoretical and Applied Genetics, 1994, 88(3):355-361.
[46] LEXER C, HEINZE B, ALIA R, et al. Hybrid zones as a tool for identifying adaptive genetic variation in outbreeding forest trees:lessons from wild annual sunflowers (Helianthus spp.)[J]. Forest Ecology and Management, 2004, 197(1/2/3):49-64.
[47] DOUGHERTY L, SINGH R, BROWN S, et al. Exploring DNA variant segregation types in pooled genome sequencing enables effective mapping of weeping trait in Malus[J]. Journal of Experimental Botany, 2018, 69(7):1499-1516.
[48] XUE H, SHI T, WANG F, et al. Interval mapping for red/green skin color in Asian pears using a modified QTL-seq method[J]. Horticulture Research, 2017, 4:17053. DOI:10.1038/hortres.2017.53.
[49] DARDICK C, CALLAHAN A, HORN R, et al. PpeTAC1 promotes the horizontal growth of branches in peach trees and is a member of a functionally conserved gene family found in diverse plants species[J].The Plant Journal, 2013, 75(4):618-630.
[50] YE Y J, CAI M, JU Y Q, et al. Identification and validation of snp markers linked to dwarf traits using SLAF-seq technology in Lagerstroemia[J]. Plos One, 2016, 11(7):e0158970. DOI:10.1371/journal.pone.0158970.
[51] 余惠文.柚遗传多样性及叶片渐绿性状突变研究[D].武汉:华中农业大学, 2018.
[52] 刘梦雨,刘小丰,江东,等.利用重测序-BSA分析鉴定金柑油胞发育相关基因[J].园艺学报, 2019, 46(5):841-834.
[53] WANG X, XU Y, ZHANG S, et al. Genomic analyses of primitive, wild and cultivated citrus provide insights into asexual reproduction[J]. Nature Genetics, 2017, 49(5):765-772.
[54] DAS S, SINGH M, SRIVASTAVA R, et al. mQTL-seq delineates functionally relevant candidate gene harbouring a major QTL regulating pod number in chickpea[J]. DNA Research, 2016, 23(1):53-65.
[55] YUAN J H, LI J H, YUAN J J, et al. The application of MutMap in forward genetic studies based on whole-genome sequencing[J].遗传, 2017, 39(12):1168-1177.
[56] ZEGEYE W A, ZHANG Y, CAO L, et al. Whole genome resequencing from bulked populations as a rapid QTL and gene identification method in rice[J]. International Journal of Molecular Science, 2018, 19(12):4000. DOI:10.3390/ijms19124000.
[57] 高文杰,陈敏健,刘爱琴,等.木本植物EMS诱变育种研究进展[J].分子植物育种, 2019, 17(20):6768-6774.
[58] ZHAO Y, MA J, LI M, et al. Whole-genome resequencing-based QTL-seq identified AhTc1 gene encoding a R2R3-MYB transcription factor controlling peanut purple testa color[J]. Plant Biotechnology Journal, 2019. DOI:10.1111/pbi.13175.
[59] HILL J T, DEMAREST B L, BISGROVE B W, et al. MMAPPR:mutation mapping analysis pipeline for pooled RNA-seq[J]. Genome Research, 2013, 23(4):687-697.
[60] XU Y B, LU Y L, XIE C X, et al. Whole-genome strategies for marker-assisted plant breeding[J]. Molecular Breeding, 2012, 29(4):833-854.
[61] SUN Y P, WANG J K, CROUCH J H, et al. Efficiency of selective genotyping for genetic analysis of complex traits and potential applications in crop improvement[J]. Molecular Breeding, 2010, 26(3):493-511.
[62] LEBOWITZ R J, SOLLER M, BECKMANN J S. Trait-based analyses for the detection of linkage between marker loci and quantitative trait loci in crosses between inbred lines[J]. Theoretical and Applied Genetics, 1987, 73(4):556-562.
[63] VIKRAM P, SWAMY B P M, DIXIT S, et al. qDTY1.1, a major QTL for rice grain yield under reproductive-stage drought stress with a consistent effect in multiple elite genetic backgrounds[J]. BMC Genetics, 2011, 12(1):89. DOI:10.1186/1471-2156-12-89.
[64] JAMES G V, PATEL V, NORDSTROM K J V, et al. Users guide for mapping-by-sequencing in Arabidopsis[J]. Genome Biology, 2013,14:R61. DOI:10.1186/gb-2013-14-6-r61.
[65] MASCHER M, JOST M, KUON J E, et al. Mapping-by-sequencing accelerates forward genetics in barley[J]. Genome Biology, 2014, 15(6):R78. DOI:10.1186/gb-2014-15-6-r78.
[66] GUAN R, ZHAO Y, ZHANG H, et al. Draft genome of the living fossil Ginkgo biloba[J]. GigaScience, 2016, 5(1):49. DOI:10.1186/s13742-016-0154-1.
[67] ALBERT V A, BARBAZUK W B, DEPAMPHILIS C W, et al. The Amborella genome and the evolution of flowering plants[J]. Science, 2013, 342(6165):1241089. DOI:10.1126/science.1241089.
[68] XU Y, WANG J, CROUCH J. Selective genotyping and pooled DNA analysis:an innovative use of an old concept[J]. African Journal of Biotechnology, 2008, 5(25):2540-2568.
[69] KIM S Y, LI Y R, GUO Y R, et al. Design of association studies with pooled or un-pooled next-generation sequencing data[J]. Genetic Epidemiology, 2010, 34(5):479-491.
[70] GHAZVINI H, HIEBERT C W, THOMAS J B, et al. Development of a multiple bulked segregant analysis (MBSA) method used to locate a new stem rust resistance gene (Sr54) in the winter wheat cultivar Norin 40[J]. Theoretical and Applied Genetics, 2013, 126(2):443-449.
[71] ZOU C, WANG P X, XU Y B. Bulked sample analysis in genetics, genomics and crop improvement[J]. Plant Biotechnology Journal, 2016, 14(10):1941-1955.
[72] XU Y B. Envirotyping for deciphering environmental impacts on crop plants[J]. Theoretical and Applied Genetics, 2016, 129(4):653-673.
[73] ALKAN C, SAJJADIAN S, EICHLER E E. Limitations of next-generation genome sequence assembly[J]. Nature Methods, 2011, 8(1):61-65.
[74] PASTINEN T. Genome-wide allele-specific analysis:insights into regulatory variation[J]. Nature Reviews Genetics, 2010, 11(8):533-538.
[75] EHRENREICH I M, TORABI N, JIA Y, et al. Dissection of genetically complex traits with extremely large pools of yeast segregants[J]. Nature, 2010, 464(7291):1039-1042.

PDF全文 浏览全文

相关图谱

扫描二维码