编号
lyqk005347
中文标题
高山林线树木光合作用适应性研究进展
作者单位
南京大学生命科学学院,南京 210000;南京大学生命科学学院,南京 210000;南京大学生命科学学院,南京 210000;南京大学生命科学学院,南京 210000;南京大学生命科学学院,南京 210000;南京大学生命科学学院,南京 210000
期刊名称
世界林业研究
年份
2016
卷号
29
期号
2
栏目编号
1
栏目名称
专题论述
中文摘要
高山林线作为一类特殊的生态过渡带,各类环境因子随海拔升高具有明显的梯度变化规律。林线过渡带物种组成与植被格局变化、林线上下界及树线推移等长期受到生态学与植物学研究的关注。不同生活型的林线植物,尤其是木本植物对高海拔林线逆境光合响应方式与策略的差异,直接导致林线植被组成与分布格局的变化,最终影响林线上下界以及树线的形成。并且,作为陆地生态系统对全球气候变化响应最为敏感的地区之一,林线植物光合作用响应性变化特征已成为预测全球气候变化条件下林线植被未来动态变化的重要参数。文中主要从叶片形态与结构以及叶片光合生理代谢等方面,综述山地木本植物适应林线逆境的相关研究进展,以期有助于理解高寒地带林线生境植被分布格局形成以及物种组成变化的驱动因子,为在全球气候变化条件下开展林线植物光合作用响应性研究提供参考作用。
基金项目
国家自然科学基金(31100270)。
英文标题
Research Advance on Photosynthetic Adaptation of Alpine Timberline Trees
作者英文名
Ling Ziran,Wang Danbi,Zhang Yunyan,Shi En,Geng Qifang and Wang Zhongsheng
单位英文名
College of Life Science,Nanjing University,Nanjing 210000,China;College of Life Science,Nanjing University,Nanjing 210000,China;College of Life Science,Nanjing University,Nanjing 210000,China;College of Life Science,Nanjing University,Nanjing 210000,China;College of Life Science,Nanjing University,Nanjing 210000,China;College of Life Science,Nanjing University,Nanjing 210000,China
英文摘要
As a special type of transitional ecotone, alpine timberline has various environmental factors which show obvious gradient variations with elevation. The species composition and vegetation pattern changes in the timberline ecotone, as well as upper and lower boundary development of timberline and treeline procession, has raised concerns by ecologist and botanists for a long term. Timberline plants with different life-forms, especially woody plants, have different photosynthetic response strategies to timberline adversity, which directly result in the changes in vegetation composition and distribution patterns of timberline, and affect ultimately the formation of the upper and lower boundary of timberline and treeline. Because timberline is one of the most sensitive region in terms of the response of terrestrial ecosystem to global climate change, the photosynthesis of timberline plants have become an important parameter to predict the future dynamic changes there in the context of global climate change. This paper systematically reviewed the research advances on mountain woody plants adaptation to timberline adversity in terms of leaf morphology and structure as well as leaf photosynthetic physiological characteristics. It helps understand the driving factors to the formation of vegetation distribution pattern and changes in species composition, and is also of great reference value for the research on photosynthetic response of timberline plants under the conditions of global climate change.
英文关键词
timberline;ecotone;woody plants;photosynthesis;global climate change
起始页码
12
截止页码
17
投稿时间
2016/1/29
分类号
S718.45
DOI
10.13348/j.cnki.sjlyyj.2016.0013.y
参考文献
[1] KÖRNER C,PAULSEN J. A world-wide study of high altitude treeline temperatures[J].Journal of Biogeography,2004,31(5):713-732.
[2] HOLTMEIER F K. Ecological aspects of climatically-caused timberline fluctuations[M]//Beniston M(ed). Mountain environment in changing climates. London, 1994: 220-233.
[3] BOYCE R L, VOSTRAL C B, FRIEDLAND A J. Winter water relations of New England conifers and factors influencing their upper elevational limits: II. modeling[J].Tree Physiology,2002,22(11): 801-806.
[4] VOSTRAL C B, BOYCE R L, FRIEDLAND A J. Winter water relations of New England conifers and factors influencing their upper elevational limits: I. measurements[J].Tree Physiology, 2002, 22(11): 793-800.
[5] GRACE J, BERNINGER F, NAGY L. Impacts of climate change at the treeline[J].Annals of Botany,2002, 90(4): 537-544.
[6] HÄTTENSCHWILER S, HANDA I T, EQLI L, et al. Atmospheric CO2 enrichment of alpine treeline conifers[J]. New Phytologist, 2002, 156(3): 365-375.
[7] HOCH G, POPP M, KÖRNER C. Altitudinal increase of mobile carbon pools in Pinus cembra suggests sink limitation of growth at the Swiss treeline[J].Oikos,2002,98(3):361-374.
[8] 李明财,罗天祥,朱教君,等.高山林线形成机理及植物相关生理生态学特性研究进展[J].生态学报,2008,28(11): 5584-5591.
[9] 祁建,马克明,张育新.辽东栎叶特性沿海拔梯度的变化及其环境解释[J].生态学报,2007,27(3): 931-937.
[10] 赵平,曾小平,孙谷畴.陆生植物对UV-B辐射增量响应研究进展[J].应用与环境生物学报,2004, 10(1):122-127.
[11] 林玲. 急尖长苞冷杉叶片形态与生理特征对海拔梯度的响应[D].拉萨:西藏大学,2008.
[12] 李春燕. 长白山林线树种岳桦(Betula ermanii)叶性状沿海拔梯度的变化[D].北京:中国林业科学研究院,2009.
[13] VOGELMANN T C. Plant tissue optics[J]. Annual Review of Plant Physiology and Plant Molecular Biology,1993,44(4):231-251.
[14] HOLMES M G, KEILLER D R. Effects of pubescence and waxes on the reflectance of leaves in the ultraviolet and photosynthetic wavebands: a comparison of a range of species[J]. Plant, Cell and Environment,2002,25(1):85-93.
[15] 陈晓莉. 不同海拔青海云杉和祁连圆柏生理生态适应性研究[D].兰州:甘肃农业大学,2008.
[16] BERMOULLI M, KÖRNER C. Dry matter allocation in treeline trees[J].Phyton,1999,39(4):7-12.
[17] 邓坤枚,石培礼,杨振林.长白山树线交错带的生物量分配和净生产力[J].自然资源学报,2006,21(6): 942-948.
[18] 贺金生, 陈伟烈, 王勋陵.高山栎叶的形态结构及其与生态环境的关系[J].植物生态学报, 1994, 18(3): 219-227.
[19] SMEEKEN S, MA J, HANSON J, et al. Sugar signals and molecular networks controlling plant growth [J]. Current Opinion in Plant Biology, 2010,13(13):274-279.
[20] SHI Z, SHI S Q, YAO H J, et al. Production of ROS and its antioxidant system in plant mitochondria[J].Journal of Beijing Forestry University, 2009,31(1):150-154.
[21] ELVIRA S, AIONSO R, CASTILLO F J, et al. On the response of pigments and antioxidants of Pinus halepensis seedlings to Mediterranean climatic factors and long-term ozone exposure[J].New Phytologist,1998,138(3): 419-432.
[22] MATHEWS-ROTH M M. Carotenoids and photoprotection[J]. Photochemistry and Photobiology, 1997, 655(suppl1): 1485-1515.
[23] SPARKS J P, EHLERINGERH J R. Leaf carbon isotope discrimination and nitrogen content of riparian trees along an elevational gradient[J]. Oecologia,1997,109(3):362-367.
[24] RYAN M G, PHILLIPS N, BOND B J. The hydraulic limitation hypothesis revisited[J].Plant, Cell and Environment,2006,29(3): 367-381.
[25] 赵长明,高贤良,马仁义,等.祁连圆柏和青海云杉幼苗生理生态特征对土壤干旱胁迫的响应[J].冰川冻土, 2012,34(1):147-153.
[26] 陈银萍,张满效,陈拓,等.圆柏属常绿木本植物叶片抗氧化系统季节变化与抗冷冻的关系[J].生态学杂志,2006,25(11):1318-1322.
[27] 陈花,吴俊林,李晓军.叶绿体中活性氧的产生和清除机制[J].现代生物医学进展,2008, 8(10): 1979-1981.
[28] 韩发,周党卫,滕中华,等.青藏高原不同海拔矮嵩草抗氧化系统的比较[J].西北植物学报,2003, 23(9): 1491-1496.
[29] 黄晓霞,冯程程,姜永雷,等.云南玉龙雪山川滇高山栎生理生化特性对海拔梯度的响应[J].西部林业科学,2015,44(4):1-6.
[30] 林小虎,秘树青,郭振清,等.不同海拔天女木兰叶抗氧化酶活性与光合色素含量[J]. 经济林研究,2011,29(2):60-64.
[31] 黄晓霞,唐探,姜永雷.滇西北玉龙雪山急尖长苞冷杉不同海拔的生理特性变化[J].浙江林业科技,2015,35(1):40-44.
[32] 梁建萍,牛远,谢敬斯,等.不同海拔华北落叶松针叶三种抗氧化酶活性与光合色素含量[J].应用生态学报,2007,18(7):1414-1419.
[33] 张慧文,马剑英,孙伟,等.不同海拔天山云杉叶功能性状及其与土壤因子的关系[J].生态学报, 2010, 30(21): 5747-5758.
[34] 吴栋栋. 长白山林线岳桦生理生态特性研究[D].沈阳:沈阳农业大学,2009.
[35] 文陇英,陈拓.不同海拔高度祁连圆柏和青海云杉叶片色素的变化特征[J].植物学报, 2012, 47(4): 405-412.
[36] MOLAS J. Changes of chloroplast ultrastructure and total chlorophyll concentration in cabbage leaves caused by excess of organic Ni(Ⅱ)complexes[J]. Environmental and Experimental Botany, 2002, 47(2): 115-126.
[37] HOLZER K. Die winterlichen Vernderungen der Assimilations-zellen von Zirbe(Pinus cembra L.) und Fichte(Pincea excelsa LINK) an der alpinen Waldgrenze[J].Plant Systematics and Evolution, 1958, 105(4): 323-346.
[38] HENCKEL P A, BARSKAYA E L. Seasonal changes in spruce chloroplasts[J]. Fiziol Rast, 1960,7(6), 645-653.
[39] KÖRNER C. The nutritional status of plants from high altitudes[J].Oecologia,1989, 81(3):379-391.
[40] 杨淑丽,高贤良,陈立同,等.青海柴达木盆地林线附近祁连圆柏叶片功能状态的变化特征[J].冰川冻土, 2015, 37(1): 80-86.
[41] 胡启鹏. 长白山岳桦(Betula ermanii)叶性状和生长对海拔梯度响应研究[D].北京:北京林业大学,2008.
[42] WULLSCHLEGER S D. Biochemical limitations to carbon assimilation in C3 plants: a retrospective analysis of the A/Ci curves from 109 species[J].Journal of Experimental Botany,1993, 44(262):907-920.
[43] 冯秋红. 川西亚高山不同生活型植物叶片δ13C的海拔响应研究[D].北京:北京林业科学研究院,2011.
[44] DRUDE O. Handbuch der Pflanzengeographie[M].Stuttgart:Englehorn,1890:582.
[45] SLATYER R O, MORROW P A. Altitudinal variation in the photosynthetic characteristics of snow gum, Eucalpytus pauciflora Sieb. Ex Spreng.: I. seasonal changes under field conditions in the snowy mountains area of south-eastern Australia[J]. Australian Journal of Botany,1997, 25(1):1-20.
[46] LLOYD A, GRAUMLICH L. Holocene dynamics of treeline forests in the Sierra Nevada[J]. Ecology, 1997,78(4): 1199-1210.
[47] KULLMAN K. 20th century climate warming and tree-limit rise in the southern Scandes of Sweden[J]. A Journal of the Human Environment,2001,30(2):72-80.
[48] HÃTTENSCHWILER S, HANDA T, EGLI L, et al. Atmospheric CO2 enrichment of alpine treeline conifers[J].New Phytologist,2002,156(3): 363-375.
[49] Shi Z M, Liu S R, Liu X L, et al. Altitudinal variation in photosynthetic capacity, diffusional conductance, and δ13C of butterfly bush(Buddleja davidii French.)plants growing at high elevations[J]. Physiologia Plantarum, 2006,128(4):722-731.
[50] DULLINGER S, DIRNBOCK T, GRABHERR G. Modelling climate change-driven treeline shifts: relative effects of temperature increase,dispersal and invisibility[J].Journal of Ecology, 2004, 92(2): 241-252.
[51] 吴锡浩. 暗针叶林带温度研究[J].科学通报,1983(23):1451-1454.
[52] 侯学煜. 论中国各植被区山地植被垂直带谱的特征[C]//中国植物学会.中国植物学会三十周年年会论文摘要汇编.北京:中国科学技术情报研究所出版社,1963: 254.
[53] 刘淑明,马龙第,孙丙寅.油松年轮生长与秦岭北坡气候的初步研究[J].西北林学院学报, 1997, 12(2): 37-41.
[54] 吴祥定,邵雪梅.采用树轮宽度资料分析气候变化对树木生长量影响的尝试[J].地理学报, 1996, 51(suppl1): 92-101.
[55] 郝占庆,代力民,贺红士.气候变暖对长白山主要树种的潜在影响[J].应用生态学报,2001, 12(5): 653-658.
PDF全文
浏览全文