编号
lyqk009494
中文标题
外生菌根共生对林木氮素吸收的促进作用
作者单位
中国林业科学研究院热带林业研究所,热带林业研究国家林业和草原局重点实验室,广州 510520
期刊名称
世界林业研究
年份
2021
卷号
34
期号
3
栏目名称
专题论述
中文摘要
外生菌根真菌能与某些树木形成稳定的菌植共生体——外生菌根。外生菌根能吸收土壤中植物难以吸收的无机或有机形式营养物质,并传递至宿主植物为其所利用。由于这种养分传递的生态重要性,外生菌根真菌介导的“菌植”N传递关系受到研究人员的广泛关注。文中综述了外生菌根真菌的可利用N形式及其促进宿主植物N营养吸收的机理,主要归纳为:1)菌根增加了养分吸收面积,促进N吸收;2)外生菌根真菌编码利用N源所必需的一套酶和转运体,协助宿主对难吸收的硝酸盐和有机N的利用。在全球N沉降日益加剧的背景下,本综述将有助于了解外生菌根在当前和未来气候情景下的生态作用。
基金项目
中央级公益性科研院所基本科研业务费专项基金“南方珍贵用材树种多重‘菌植’共生体的形成与作用机制”(CAFYBB2017ZB001);国家自然科学基金“珍贵用材树种生理特性基础研究”(31722012)
英文标题
Nitrogen Uptake Promoting Mechanism of Trees in Ectomycorrhizal Symbioses
作者英文名
Wang Qian, Li Zhenshuang, Yang Fucheng, Liang Junfeng, Lu Junkun
单位英文名
Research Institute of Tropical Forestry, Chinese Academy of Forestry; Key Laboratory of National Forestry and Grassland Administration on Tropical Forestry Research, Guangzhou 510520, China
英文摘要
Ectomycorrhizal fungi can form a stable symbiont with certain trees, namely ectomycorrhiza. Ectomycorrhiza can absorb nutrients in inorganic or organic form in the soil that are hard to be absorbed by plants and transfer them to the host plants. Due to the ecological importance of this nutrient delivery, it is necessary to better understand the relationship of nitrogen delivery between fungi in ectomycorrhizal symbioses and host plants. This paper reviews the available nitrogen forms of ectomycorrhizal fungi and their mechanisms for promoting nitrogen uptake by host plants, which are summarized as follows: 1) Mycorrhizal colonization increases plant root nutrient uptake area and promotes N uptake; and 2) Ectomycorrhizal fungi encode a set of enzymes and transporters necessary for N source to assist the host plant in absorbing hard-to-use nitrate and organic nitrogen. This review can help better understand the ecological effects of ectomycorrhizal symbiosis in current and future climate scenarios under the background of increasing global nitrogen deposition.
英文关键词
Ectomycorrhizal fungi;nitrogen;host plant
起始页码
19
截止页码
24
投稿时间
2020/10/15
最后修改时间
2020/12/23
作者简介
王倩,女,硕士研究生,研究方向为林木微生物资源利用,E-mail:qianwang117@163.com
通讯作者介绍
陆俊锟,男,研究员,研究方向为林木营养与微生物应用,E-mail:junkunlu@caf.ac.cn
E-mail
qianwang117@163.com;junkunlu@caf.ac.cn
分类号
S718.43
DOI
10.13348/j.cnki.sjlyyj.2020.0133.y
参考文献
[1] SMITH S E, READ D J. Mycorrhizal symbiosis[M]. 2nd ed. San Diego, USA: Academic Press, 1997.
[2] READ D J, PERE-MORENO J. Mycorrhizas and nutrient cycling in ecosystems-a journey towards relevance?[J]. New Phytologist, 2003, 157:475-492.
[3] ZAK D R, PELLITIER P T, ARGIROFF W A, et al. Exploring the role of ectomycorrhizal fungi in soil carbon dynamics[J]. New Phytologist, 2019, 223(1):33-39.
[4] GALLOWAY J N, ABER J D, ERISMAN J W, et al. The nitrogen cascade[J]. BioScience, 2003, 53(4):341-356.
[5] SALA O E, CHAPINII I F S, ARMESTO J J, et al. Global biodiversity scenarios for the year 2100[J]. Science, 2000, 287(5459):1770-1774.
[6] COMPANT S, VAN DER HEIJDEN M G A, SESSITSH A. Climate change effects on beneficial plant-microorganism interactions[J]. FEMS Microbiology Ecology, 2010, 73(2):197-214.
[7] FINLAY R D, FROSTEGARD A, SONNERFELDT A M. Utilization of organic and inorganic nitrogen sources by ectomycorrhizal fungi in pure culture and in symbiosis with Pinus contorta Dougl. ex Loud[J]. New Phytologist, 1992, 120:105-115.
[8] MONTANINI B, MORETTO N, SORAGNI E, et al. A high-affinity ammonium transporter from the mycorrhizal ascomycete Tuber borchii[J]. Fungal Genetics and Biology, 2002, 36(1):22-34.
[9] WILLMANN A, WEI M, SEHLS U. Ectomycorrhiza-mediated repression of the high-affinity ammonium importer gene AmAMT2 in Amanita muscaria[J]. Current Genetics, 2007, 51(2):71-78.
[10] 郝龙飞, 郝文颖, 王续富, 等. 4种外生菌根真菌对氮源的响应研究[J]. 南方林业科学,2020(3):20-24.
[11] KEMPPAINEN M J, CRESPO M C A, PARDO A G. fHANT-AC genes of the ectomycorrhizal fungus Laccaria bicolor are not repressed by l-glutamine allowing simultaneous utilization of nitrate and organic nitrogen sources[J]. Environment Microbiology Reports, 2010, 2(4):541-553.
[12] JARGEAT P, REKANGALT D, VERNER M C, et al. Characterisation and expression analysis of a nitrate transporter and nitrite reductase genes, two members of a gene cluster for nitrate assimilation from the symbiotic basidiomycete Hebeloma cylindrosporum[J]. Current Genetics, 2003, 43(3):199-205.
[13] 韩士昌. 外源碳氮添加对土壤生物学活性的影响及外生菌根真菌在氮转化中的作用[D]. 济南: 济南大学, 2017.
[14] MULLER T, AVOLIO M, OLIVI M, et al. Nitrogen transport in the ectomycorrhiza association: the Hebeloma cylindrosporum —Pinus pinaster model[J]. Cheminform, 2007, 68(1):41-51.
[15] LUCIC E, FOURREY C, KOHLER A, et al. A gene repertoire for nitrogen transporters in Laccaria bicolor[J]. New Phytologist, 2008, 180(2):343-364.
[16] CASIERI L, LAHMIDI N A, DOIDY J, et al. Biotrophic transportome in mutualistic plant fungal interactions[J]. Mycorrhiza, 2013, 23(8):597-625.
[17] AVOLIO M, MULLER T, MPANGARA A, et al. Regulation of genes involved in nitrogen utilization on different C/N ratios and nitrogen sources in the model ectomycorrhizal fungus Hebeloma cylindrosporum[J]. Mycorrhiza, 2012, 22(7):515-524.
[18] BODEKER I, CLEMMENSEN K E, BOER W, et al. Ectomycorrhizal Cortinarius species participate in enzymatic oxidation of humus in northern forest ecosystems[J]. New Phytologist, 2014, 203:245-256.
[19] ABUZINADAH R A, READ D J. The role of proteins in the nitrogen nutrition of ectomycorrhizal plants: I. utilization of peptides and proteins by ectomycorrhizal fungi[J]. New Phytologist, 2006, 112(1):55-60.
[20] TALBOT J M, BRUNS T D, SMITH D P, et al. Independent roles of ectomycorrhizal and saprotrophic communities in soil organic matter decomposition[J]. Soil Biology & Biochemistry, 2013, 57(3):282-291.
[21] PELLITIER P T, ZAK D R. Ectomycorrhizal fungi and the enzymatic liberation of nitrogen from soil organic matter: why evolutionary history matters[J]. New Phytologist, 2017, 217(1):68-73.
[22] FLOUDAS D, BINDER M, RILEY R, et al. The Paleozoic origin of enzymatic lignin decomposition reconstructed from 31 fungal genomes[J]. Science, 2012, 336:1715-1719.
[23] SMITH J M, WHITESIDE M D, JONES M D. Rapid nitrogen loss from ectomycorrhizal pine germinants signaled by their fungal symbiont[J]. Mycorrhiza, 2020, 30(4):407-417.
[24] RILLIG M C, CALDWELL B A, WSTEN H A B, et al. Role of proteins in soil carbon and nitrogen storage: controls on persistence[J]. Biogeochemistry, 2007, 85(1):25-44.
[25] BENDING G D, READ D J. Nitrogen mobilization from protein-polyphenol complex by ericoid and ectomycorrhizal fungi[J]. Soil Biology & Biochemistry, 1996, 28:1603-1612.
[26] QUALLS R G, HAINES B L, SWANK W T. Fluxes of dissolved organic nutrients and humic substances in a deciduous forest[J]. Ecology, 1991, 72(1):254-266.
[27] SHAH F, NICOLAS C, BENTZER J, et al. Ectomycorrhizal fungi decompose soil organic matter using oxidative mechanisms adapted from saprotrophic ancestors[J]. New Phytologist, 2016, 209:1705-1719.
[28] RINEAU F, ROTH D, SHAH F, et al. The ectomycorrhizal fungus Paxillus involutus converts organic matter in plant litter using a trimmed brown-rot mechanism involving Fenton chemistry[J]. Environmental Microbiology, 2012, 14(6):1477-1487.
[29] BEECK M O D, TROEIN C, PETERSON C, et al. Fenton reaction facilitates organic nitrogen acquisition by an ectomycorrhizal fungus[J]. New Phytologist, 2018, 218(1):335-343.
[30] MARTIN F, AERTS A, AHREN D, et al. The genome of Laccaria bicolor provides insights into mycorrhizal symbiosis[J]. Nature, 2008, 452(7183):88-92.
[31] MARMEISSE R, GUIDOT A, GAY G, et al. Hebeloma cylindrosporum: a model species to study ectomycorrhizal symbiosis from gene to ecosystem[J]. New Phytologist, 2004, 163(3):481-498.
[32] LE TACON F, ZELLER B, PLAIN C, et al. Study of nitrogen and carbon transfer from soil organic matter to Tuber melanosporum mycorrhizas and ascocarps using 15N and 13C soil labelling and wholegenome oligoarrays[J]. Plant and Soil, 2015, 395(1/2):351-373.
[33] VAARIO L M, SAH S P, NORISADA M, et al. Tricholoma matsutake may take more nitrogen in the organic form than other ectomycorrhizal fungi for its sporocarp development: the isotopic evidence[J]. Mycorrhiza, 2018, 29(1):51-59.
[34] RINEAU F, SHAH F, SMITS M, et al. Carbon availability triggers the decomposition of plant litter and assimilation of nitrogen by an ectomycorrhizal fungus[J]. The ISME Journal, 2013, 7(10):2010-2022.
[35] RINEAU F, STAS J, NGUYEN N H, et al. Ectomycorrhizal fungal protein degradation ability predicted by soil organic nitrogen availability[J]. Applied and Environmental Microbiology, 2015, 82(5):1391-1400.
[36] GARCIA K, DELTEIL A, CONEJERO G, et al. Potassium nutrition of ectomycorrhizal Pinus pinaster: overexpression of the Hebeloma cylindrosporum HcTrk1 transporter affects the translocation of both K(+) and phosphorus in the host plant[J]. New Phytologist, 2014, 201(3):951-960.
[37] 孙秋玲, 戴思兰, 张春英, 等. 菌根真菌促进植物吸收利用氮素机制的研究进展[J]. 生态学杂志,2012,31(05):1302-1310.
[38] 周崇莲, 韩桂之, 周玉芝. 几种松树外生菌根真菌的研究[J]. 生态学报,1983,3(2):15-21.
[39] NEHLS U, PLASSARD C. Nitrogen and phosphate metabolism in ectomycorrhizas[J]. New Phytologist, 2018, 220(4):1047-1058.
[40] HOBBIE E A, CHEN J, HASSELQUIST N J. Fertilization alters nitrogen isotopes and concentrations in ectomycorrhizal fungi and soil in pine forests[J]. Fungal Ecology, 2019, 39:267-275.
[41] HOBBIE E A, COLPAERT J V, WHITE M W, et al. Nitrogen form, availability, and mycorrhizal colonization affect biomass and nitrogen isotope patterns in Pinus sylvestris[J]. Plant and Soil, 2008, 310:121-136.
[42] NASHOLM T, HOGBERG P, FRANKLIN O, et al. Are ectomycorrhizal fungi alleviating or aggravating nitrogen limitation of tree growth in boreal forests?[J]. New Phytologist, 2013, l198:214-221.
[43] TERRER C, VICCA S, HUNGATE B A, et al. Mycorrhizal association as a primary control of the CO2 fertilization effect[J]. Science, 2016, 353(6294):72-74.
[44] FRANKLIN O, NASHOLM T, H?GBERG P, et al. Forests trapped in nitrogen limitation-an ecological market perspective on ectomycorrhizal symbiosis[J]. New Phytologist, 2014, 203(2):657-666.
[45] CORREAORRêA A, STRASSER R J, MARTINS-LOUCAO M A. Response of plants to ectomycorrhizae in N-limited conditions: which factors determine its variation?[J]. Mycorrhiza, 2008, 18:413-427.
[46] HASSELQUIST N J, METCALFE D B, INSELSBACHER E, et al. Greater carbon allocation to mycorrhizal fungi reduces tree nitrogen uptake in a boreal forest[J]. Ecology, 2016, 97(4):1012-1022.
[47] HOGBERG P, JOHANNISSON C, YARWOOD S, et al. Recovery of ectomycorrhiza after nitrogen saturation of a conifer forest[J]. New Phytologist, 2011, 189(2):515-525.
[48] HASSELQUIST N J, HOGBERG P. Dosage and duration effects of nitrogen additions on ectomycorrhizal sporocarp production and functioning: an example from two N‐limited boreal forests[J]. Ecology & Evolution, 2014, 4(15):3015-3026.
[49] NASHOLM T, PERSSON J. Plant acquisition of organic nitrogen in boreal forests[J]. Physiologia Plantarum, 2001, 111:419-426.
[50] PERSSON J, GARDESTRM P, NSHOLM A T. Uptake, metabolism and distribution of organic and inorganic nitrogen sources by Pinus sylvestris[J]. Journal of Experimental Botany, 2006, 57(11):2651-2659.
[51] WEI L, CHEN C, YU S. Uptake of organic nitrogen and preference for inorganic nitrogen by two Australian native Araucariaceae species[J]. Transactions of the Botanical Society of Edinburgh, 2015, 8(2):259-264.
[52] BRITTO D T, KRONZUCKER H J. Ecological significance and complexity of N-source preference in plants[J]. Annals of Botany, 2013, 112(6):957-963.
[53] LIESE R, LUBBE T, ALBERS N W, et al. The mycorrhizal type governs root exudation and nitrogen uptake of temperate tree species[J]. Tree Physiology, 2018, 38(1):83-95.
[54] GUO W, ZHANG Z, LIU Q, et al. Seasonal variations in plant nitrogen acquisition in an ectomycorrhizal alpine forest on the eastern Tibetan Plateau, China[J]. Plant and Soil, 2020, 452(1/2):1-13.
[55] WANG L, MACKO S A. Constrained preferences in nitrogen uptake across plant species and environments[J]. Plant Cell & Environment, 2011, 34(3):525-534.
[56] BAUM C, WEIHB M, VERWIJSTB T, et al. The effects of nitrogen fertilization and soil properties on mycorrhizal formation of Salix viminalis[J]. Forest Ecology and Management, 2002, 160(1/2/3):35-43.
[57] 崔磊, 穆立蔷. 紫椴根际土壤肥力与外生菌根侵染关系[J]. 生态学杂志,2015,34(1):145-149.
[58] 张彤彤, 耿增超, 许晨阳, 等. 秦岭辛家山林区落叶松外生菌根真菌多样性[J]. 微生物学报,2018,58(3):443-454.
[59] HU Y, VERESOGLOU S D, TEDERSOO L, et al. Contrasting latitudinal diversity and co-occurrence patterns of soil fungi and plants in forest ecosystems[J]. Soil Biology & Biochemistry, 2019, 131:100-110.
[60] COX F, BARSOUM N, LILLESKOV E A, et al. Nitrogen availability is a primary determinant of conifer mycorrhizas across complex environmental gradients[J]. Ecology Letters, 2010, 13(9):1103-1113.
[61] NILSSON L O, WALLANDER H. Production of external mycelium by ectomycorrhizal fungi in a Norway spruce forest was reduced in response to nitrogen fertilization[J]. New Phytologist, 2003, 158(2):409-416.
[62] KJOLLER R, NILSSON L O, HANSEN K, et al. Dramatic changes in ectomycorrhizal community composition, root tip abundance and mycelial production along a stand-scale nitrogen deposition gradient[J]. New Phytologist, 2012, 194(1):278-286.
[63] CORRALES A, TURNER B L, TEDERSOO L, et al. Nitrogen addition alters ectomycorrhizal fungal communities and soil enzyme activities in a tropical montane forest[J]. Fungal Ecology, 2017, 27:14-23.
[64] AVERILL C, DIETZE M C, BHATNAGAR J M. Continental-scale nitrogen pollution is shifting forest mycorrhizal associations and soil carbon stocks[J]. Global Change Biology, 2018, 24(10):4544-4553.
[65] LILLESKOV E A, FAHEY T J, LOVETT G M. Ectomycorrhizal fungal aboveground community change over an atmospheric nitrogen deposition gradient[J]. Ecological Applications, 2001, 11(2):397-410.
发布日期
2020-12-28
PDF全文
浏览全文