数据资源: 科信所期刊全文

外生菌根真菌对植物促生抗逆作用机制研究进展



编号 lyqk009425

中文标题 外生菌根真菌对植物促生抗逆作用机制研究进展

作者 赛牙热木·哈力甫  邓勋  宋小双  宋瑞清 

作者单位 1. 东北林业大学林学院,哈尔滨 150040;
2. 黑龙江省森林保护研究所,哈尔滨 150040

期刊名称 世界林业研究 

年份 2021 

卷号 34

期号 1

栏目编号 1.0

栏目名称 专题论述 

中文摘要 外生菌根真菌(ECM)为土壤真菌与陆地植物根系形成的一种互惠共生体,是森林生态系统关键的组成部分。作为生态系统的重要组分,外生菌根真菌具有较强的适应能力,可适应干旱、盐碱、重金属污染等逆境条件,外生菌根真菌侵染宿主植物根系可促进宿主植物生长、土壤养分吸收与利用、提高抗逆和抗病能力、改善土壤环境微生物群落结构。林业生产与菌根关系密切,外生菌根真菌是林木生长必不可少的重要组成部分,森林的可持续经营离不开外生菌根真菌,菌根化育苗与造林可显著提高林木成活率、促进苗木对土壤中营养元素的吸收利用和植物生长、提高植物抗逆性。文中系统阐述了外生菌根真菌促进植物生长、增强宿主植物对重金属污染、干旱、盐碱以及病虫害胁迫抗性的机制及生物修复作用,同时对外生菌根真菌资源开发、环境因子对外生菌根真菌资源的影响及利用现代技术深入研究外生菌根真菌作用机制提出了研究建议与展望。

关键词 外生菌根真菌  促生作用  抗逆作用  互作机制 

基金项目 国家“十三五”重点研发项目子课题“根际益生菌互作提高樟子松抗病性的生理及分子机制”(2017YFD0600101-6);国家自然科学基金“木霉菌与外生菌根菌互作对针叶苗木促生抗逆的协同作用机制”(31170597);国家自然科学基金“深色有隔内生真菌与外生菌根菌互作对樟子松促生

英文标题 Research Progress in the Working Mechanism of Ectomycorrhizal Fungi for Plant Growth Promotion and Stress Resistance

作者英文名 Saiyaremu Halifu, Deng Xun, Song Xiaoshuang, Song Ruiqing

单位英文名 1. College of Forestry, Northeast Forestry University, Harbin 150040, China;
2. Institute of Forestry Protection, Heilongjiang Forestry Academy, Harbin 150040, China

英文摘要 Ectomycorrhiza fungi is a kind of symbiosis formed by soil fungi and land plant roots, and it is a key component of forest ecosystem. The ectomycorrhizal fungi have strong adaptability and can adapt to drought, saline and alkali, heavy metal pollution and other adverse conditions. Its interaction with plants can promote the growth of host plants, enhance the absorption and utilization of soil nutrients, improve abiotic stress of host plants, and improve the microbial community structure of soil environment. Forestry production is closely related to mycorrhiza, which is an essential part of plantgrowth. Ectomycorrhizal fungi is indispensable for the sustainable management of forest as mycorrhizal seedling and afforestation can significantly improve the survival rate of trees, improve the nutrients absorption and utilization of seedlings from soil, promote plant growth and improve plant resistance. This paper systematically summarized the working mechanism of ectomycorrhizal fungi to promote plant growth, enhance host plant’s resistance to heavy metal pollution, drought, saline and alkali and diseases and pests, and improve biological restoration, and then puts forward the suggestions for and prospects the research on ectomycorrhizal fungi resources development, the influence of environmental factors on ectomycorrhizal fungi resources and application of new technology to the study of interaction mechanism between ectomycorrhizal fungi and host plants.

英文关键词 ectomycorrhizal fungi;growth promotion;stress resistance;interaction mechanism

起始页码 19

截止页码 24

投稿时间 2020/5/22

最后修改时间 2020/7/27

作者简介 赛牙热木·哈力甫,女,在读博士,主要从事菌物与植物互作研究,E-mail:437246661@qq.com

通讯作者介绍 宋瑞清,博士,教授,主要从事菌物开发研究,E-mail:songrq1964@163.com

E-mail 宋瑞清,songrq1964@163.com

分类号 S718.43

DOI 10.13348/j.cnki.sjlyyj.2020.0073.y

参考文献 [1] FRANK B. Über die auf Wurzelsymbiose beruhende Ernährung gewisser Bäume durch unterirdische Pilze[M]. Berichte der Deutschen Botanischen Gesellschaft, 1885.
[2] BRUNDRETT M C. Mycorrhizal associations and other means of nutrition of vascular plants: understanding the global diversity of host plants by resolving conflicting information and developing reliable means of diagnosis[J]. Plant and Soil, 2009, 320(1/2):37-77.
[3] SMITH S E, READ D J. Mycorrhizal symbiosis[M]. London: Academic Press, 2008.
[4] BONFANTE P, GENRE A. Mechanisms underlying beneficial plant–fungus interactions in mycorrhizal symbiosis[J]. Nature Communications, 2010, 1:48. DOI:10.1038/ncomms1046
[5] PATRICK D J. Plant biostimulants: definition, concept, main categories and regulation[J]. Scientia Horticulturae, 2015, 196:3-14.
[6] EKBLAD A, WALLANDER H, GODBOLD D L, et al. The production and turnover of extramatrical mycelium of ectomycorrhizal fungi in forest soils: role in carbon cycling[J]. Plant and Soil, 2013, 366(1/2):1-27.
[7] HODGE A, STORER K. Arbuscular mycorrhiza and nitrogen: implications for individual plants through to ecosystems[J]. Plant and Soil, 2015, 386(1/2):1-19.
[8] SEGNITZ R M, RUSSO S E, DAVIES S J. Ectomycorrhizal fungi drive positive phylogenetic plant–soil feedbacks in a regionally dominant tropical plant family[J]. Ecology, 2020. DOI:10.1002/ecy.3083
[9] 李艳红, 姜勇, 王文杰, 等. 有机碳和无机碳对3种真菌胞外酸性磷酸酶和蛋白酶活性的影响[J]. 植物研究,2013,33(4):404-409.
[10] BALOGH-BRUNSTAD Z, KELLER C K, DICKINSON J T, et al. Biotite weathering and nutrient uptake by ectomycorrhizal fungus, Suillus tomentosus, in liquid-culture experiments[J]. Geochimica et Cosmochimica Acta, 2008, 72(11):2601-2618.
[11] LUCIANO A, VETÚRIA L O, GERMANO N S F. Utilization of rocks and ectomycorrhizal fungi to promote growth of eucalypt[J]. Brazilian Journal of Microbiology, 2010, 41(3):676-684.
[12] 刘润进, 唐明, 陈应龙. 菌根真菌与植物抗逆性研究进展[J]. 菌物研究,2017,15(1):70-88.
[13] SMITS M M, BONNEVILLE S, BENNING L G, et al. Plant-driven weathering of apatite: the role of an ectomycorrhizal fungus[J]. Geobiology, 2012, 10(5):445-456.
[14] SMITH M L, BRUHN J N, ANDERSON J B. The fungus Armillaria bulbosa is among the largest and oldest living organisms[J]. Nature, 1992, 356(6368):428-431.
[15] BONFANTE P, ANCA I A. Plants, mycorrhizal fungi, and bacteria: a network of interactions[J]. Annual Review of Microbiology, 2009, 63(1):363-383.
[16] 徐漫, 傅婉秋, 戴传超, 等. 外生菌根真菌促生微生物生态功能研究进展[J]. 生态学杂志,2018,37(4):1246-1256.
[17] HIDAYAT C, ARIEF D H, NURBAITY A, et al. Rhizobacteria selection to enhance spore germination and hyphal length of arbuscular mycorrhizal fungi in vitro[J]. Asian Journal of Agriculture & Rural Development, 2013, 3(4):199-204.
[18] LABBÉ J L, WESTON D J, DUNKIRK N, et al. Newly identified helper bacteria stimulate ectomycorrhizal formation in Populus[J]. Frontiers in Plant Science, 2014, 5:579. DOI:10.3389/fpls.2014.00579
[19] KOELE N, TURPAULT M P, HILDEBRAND E E, et al. Interactions between mycorrhizal fungi and mycorrhizosphere bacteria during mineral weathering: budget analysis and bacterial quantification[J]. Soil Biology & Biochemistry, 2009, 41(9):1935-1942.
[20] FREY-KLETT P, BURLINSON P, DEVEAU A, et al. Bacterial-fungal interactions: hyphens between agricultural, clinical, environmental, and food microbiologists[J]. Microbiology and Molecular Biology Reviews, 2011, 75(4):583-609.
[21] ZHANG H, YU H, TANG M. Prior contact of Pinus tabulaeformis with ectomycorrhizal fungi increases plant growth and survival from damping-off[J]. New Forests, 2017, 48(280):855-866.
[22] YIN D, DENG X, SONG R. Synergistic effects between Suilllus luteus and Trichoderma virens on growth of Korean spruce seedlings and drought resistance of Scotch pine seedlings[J]. Journal of Forestry Research, 2016, 27:193-201.
[23] SEBASTIANA M, DA SILVA A B, MATOS A R, et al. Ectomycorrhizal inoculation with Pisolithus tinctorius reduces stress induced by drought in cork oak[J]. Mycorrhiza, 2018, 28(3):247-258.
[24] MARJANOVIĆ Ž, UEHLEIN N, KALDENHOFF R, et al. Aquaporins in poplar: what a difference a symbiont makes![J]. Planta, 2005, 222(2):258-268.
[25] ALVAREZ M, HUYGENS D, OLIVARES E, et al. Ectomycorrhizal fungi enhance nitrogen and phosphorus nutrition of Nothofagus dombeyi under drought conditions by regulating assimilative enzyme activities[J]. Physiologia Plantarum, 2009, 136(4):426-436.
[26] LEHTO T, ZWIAZEK J J. Ectomycorrhizas and water relations of trees: a review[J]. Mycorrhiza, 2011, 21(2):71-90.
[27] BENIWAL R S, LANGENFELD-HEYSER R, POLLE A. Ectomycorrhiza and hydrogel protect hybrid poplar from water deficit and unravel plastic responses of xylem anatomy[J]. Environmental and Experimental Botany, 2010, 69(2):189-197.
[28] DANIELSEN L, POLLE A. Poplar nutrition under drought as affected by ectomycorrhizal colonization[J]. Environmental and Experimental Botany, 2014, 108:89-98.
[29] CHEN S, HAWIGHORST P, SUN J, et al. Salt tolerance in Populus: significance of stress signaling networks, mycorrhization, and soil amendments for cellular and whole-plant nutrition[J]. Environmental and Experimental Botany, 2014, 107:113-124.
[30] LI J, BAO S, ZHANG Y, et al. Paxillus involutus strains MAJ and NAU mediate K+/Na+ homeostasis in ectomycorrhizal Populus ×canescens under sodium chloride stresss[J]. Plant Physiology, 2012, 159(4):1771-1786.
[31] ZWIAZEK J J, EQUIZA M A, KARST J, et al. Role of urban ectomycorrhizal fungi in improving the tolerance of lodgepole pine (Pinus contorta )seedlings to salt stress[J]. Mycorrhiza, 2019, 29:303-312.
[32] KUMAR A, DAMES J F, GUPTA A, et al. Current developments in arbuscular mycorrhizal fungi research and its role in salinity stress alleviation: a biotechnological perspective[J]. Critical Reviews in Biotechnology, 2015, 35(4):461-474.
[33] 温祝桂, 朱小梅, 刘冲, 等. 两株外生菌根真菌对盐渍土壤中黑松幼苗生长的影响[J]. 中南林业科技大学学报,2019,39(4):22-27.
[34] THIEM D, PIERNIK A, HRYNKIEWICZ K. Ectomycorrhizal and endophytic fungi associated with Alnus glutinosa growing in a saline area of central Poland[J]. Symbiosis, 2017, 75(1):17-28.
[35] BRANCO S, GLADIEUX P, ELLISON C E, et al. Genetic isolation between two recently diverged populations of a symbiotic fungus[J]. Molecular Ecology, 2015, 24(11):2747-2758.
[36] KHULLAR S, REDDY M S. Ectomycorrhizal diversity and tree sustainability[M]//Microbial diversity in ecosystem sustainability and biotechnological applications. Springer, Singapore, 2019: 145-166.
[37] 杨秀敏, 唐国忠, 潘宇, 等. 菌根对东南景天生长和吸收重金属的影响[J]. 金属矿山,2017(12):163-168.
[38] DIGHTON J, WHITE J F. The fungal community: its organization and role in the ecosystem[M]. CRC Press, 2017.
[39] 陶澍, 姜学艳, 刘晓蓉, 等. 过量铜对4种外生菌根真菌的生长, 碳氮和铜积累的影响[J]. 微生物学报,2002,42(6):737-744.
[40] AHONEN-JONNARTH U, VAN HEES P A W, LUNDSTRÖM U S, et al. Organic acids produced by mycorrhizal Pinus sylvestris exposed to elevated aluminium and heavy metal concentrations[J]. New Phytologist, 2000, 146(3):557-567.
[41] BLAUDEZ D, BOTTON B, CHALOT M. Cadmium uptake and subcellular compartmentation in the ectomycorrhizal fungus Paxillus involutus[J]. Microbiology, 2000, 146(5):1109-1117.
[42] ASHFORD A E, PETERSON C A, CARPENTER J L, et al. Structure and permeability of the fungal sheath in thePisonia mycorrhiza[J]. Protoplasma, 1988, 147(2/3):149-161.
[43] BLOM J M, VANNINI A, VETTRAINO A M, et al. Ectomycorrhizal community structure in a healthy and a Phytophthora-infected chestnut (Castanea sativa Mill.) stand in central Italy[J]. Mycorrhiza, 2009, 20(1):25-38.
[44] MARX D H. The influence of ectotrophic mycorrhizal fungi on the resistance of pine roots to pathogenic infegtions: V. resistance of naturally occurring mycorrhizae to infections by Phytophthora cinnamomi[J]. Phytopathology, 1970, 60:1472-1473.
[45] TANG M, ZHANG R Q, CHEN H, et al. Induced hydrolytic enzymes of ectomycorrhizal fungi against pathogen Rhizoctonia solani[J]. Biotechnology Letters, 2008, 30(10):1777-1782.
[46] 赵志鹏, 郭秀珍. 外生菌根真菌同立枯丝核菌重寄生关系的研究[J]. 微生物学报,1989,29(3):170-173.
[47] HARBORNE J B. The flavonoids: advances in research since 1986[J]. Journal of Chemical Education, 1995, 72(3):A73. DOI:10.1021/ed072pA73.11
[48] 唐明娟, 郭顺星. 菌根增强植物抗病性机理的研究进展[J]. 微生物学通报,2000,27(6):446-449.
[49] 余红霞. 黄土高原油松根际微生态特征及外生菌根真菌抗油松立枯病的作用[D]. 陕西杨凌: 西北农林科技大学, 2014.
[50] 张茹琴, 唐明, 张海涵. 四种外生菌根真菌对油松幼苗的抗猝倒病和促生作用[J]. 菌物学报,2011,30(5):812-816.

发布日期 2020-07-31

PDF全文 浏览全文

相关图谱

扫描二维码