编号
lyqk002863
中文标题
高光谱遥感在植被特征识别研究中的应用
作者单位
北京大学深圳研究生院城市与环境学院 深圳 518055;北京大学深圳研究生院城市与环境学院 深圳 518055;北京大学城市与环境学院生态学系 北京 100871
期刊名称
世界林业研究
年份
2009
卷号
22
期号
1
栏目编号
1
栏目名称
专题论述
中文摘要
总结了高光谱遥感在植被物种识别、结构特征分析、理化信息提取等主要领域的应用研究现状;分析了高光谱遥感在植被特征识别中所涉及的光谱特征优化、混合光谱分解、图像分类识别等关键性技术环节的最新进展;剖析了目前研究中存在的主要问题,并对今后的发展态势进行了展望。
基金项目
深圳市科技局及北京大学深圳研究生院校长基金项目
英文标题
Application of Hyperspectral Remote Sensing in Identification of Vegetation Characteristics
作者英文名
Liang Yaoqin and Zeng Hui
单位英文名
School of Environmental and Urban Studies,Shenzhen Graduate School,Peking University,Shenzhen 518055,Guangdong,China;School of Environmental and Urban Studies,Shenzhen Graduate School,Peking University,Shenzhen 518055,Guangdong,China;Department of Ecology,Environmental School of Peking University,Beijing 100871,China
英文摘要
In the field of vegetation identification,hyperspectral remote sensing has attracted more and more attention for its superhigh spectral resolution and enhanced ability of target identification.In this paper,the application of hyperspectral remote sensing in vegetation identification,structural characteristic analysis,biophysical and biochemical information extraction is mainly discussed.As hyperspectral processing technology is the key factor that influences specific application,the correlative processing methods and technologies are presented in spectral feature optimization,spectral unmixing decomposition,and image classification and identification.In the end,status quo and problems of hyperspectral remote sensing in vegetation identification are discussed,and the development trend is forecast.
英文关键词
hyperspectral remote sensing;identification of vegetation characteristic;spectral processing technology
起始页码
41
截止页码
47
投稿时间
2008/8/8
分类号
S771.8
参考文献
[1] 谭炳香.高光谱遥感森林类型识别及其郁闭度定量估测研究[D].北京:中国林业科学研究院,2006.
[2] 刘旭升,张晓丽.森林植被遥感分类研究进展与对策[J].林业资源管理,2004(1):61-64.
[3] 邵军勇,潘泉.高光谱遥感在植被精细分类中的应用[J].微电子学与计算机,2005,22(10):12-13,19.
[4] Prasad S Thenkabail, Enclona A Eden,Ashton S Mark,et al.Hyperion,IKONOS,ALI,and ETM+sensors in the study of A frican rainforests[J].Remote Sensing of Environment,2004,90:23-43.
[5] 谭炳香.高光谱遥感森林应用研究探讨[J].世界林业研究,2003,16(2):33-37.
[6] Peter Bunting,Rich ard Lucas.The delineation of tree crowns in Australian mixed species forests us ing hyperspectral Compact Air-borne Spectrographic Imager(CASI)data[J].Remote Sensing of Environment,2006,101:230-248.
[7] Good enough D G,Jay Pearml an,Han Chen.Forest information from hyperspectral sensing[C] //Proc.IGARSS,Anchorage,A laska,USA,2004(4):2585-2589.
[8] 孙琦,郑小贤,刘东兰.高光谱遥感获取伐区调查数据的应用综述[J].林业资源管理,2006(5):92-96.
[9] 童庆禧,郑芬兰,王晋年,等.湿地植被成像光谱遥感研究[J].遥感学报.1997,1(1):50-57.
[10] 申广荣,王人潮.植被高光谱遥感的应用研究综述[J].上海交通大学学报(农业科学版),2001,19(4):315-321.
[11] 李建平,张柏,张泠,等.湿地遥感监测研究现状与展望[J].地理科学进展,2007,26(1):33-43.
[12] Demuro M,Chishoml L.Assessment of hyperion for characterizing mangrove communities[C] //Proceedings of the AVIRIS 2003 workshop,NASA Jet Propulsion Laboratory,Pasadena,California,USA,2003.
[13] Hirano A,Madden M,Welch R.Hyperspectral image data formappnig wetland vegetation[J].W etlands,2003,23:436-448.
[14] 肖海燕,曾辉,昝启杰,等.基于高光谱数据和专家决策法提取红树林群落类型信息[J].遥感学报,2007,11(4):531-537.
[15] Vaiphasa C,Suw it O,Tanasak V,et al. Tropical mangrove species discrim ination using hyperspectral data:a laboratory study[J].Estuarine,Coastal and Shelf Science,2005,65(1-2):371-379.
[16] Schmidt K S,Skidmore A K.Spectral discrmi ination of vegetation types in a coastal wet land[J].Remote Sensing of Environment,2003,85:92-108.
[17] Cheng Wang,Massmio Menenti, Marc Philippe Stoll, et al.Mapping mixed vegetation communities in salt marshes using airborne spectral data[J].Remote Sensing of Environment.doi:10.1016/jrse.2006.10.007.
[18] 高占国,张利权.应用间接排序识别盐沼植被的光谱特征:以崇明东滩为例[J].植物生态学报,2006,30(2):252-260.
[19] Brian L Becker,David P Lusch,Qi Jiaguo.A classification based assessment of the optmial spectral and spatial resolutions for Great Lakes coastal wetland imagery[J].Remote Sensing of Environment,2007,108:111-120.
[20] Richard J A.Use of logistic regression for validation of maps of the spatial distri bution of vegetation species derived from high spatial resolution hyperspectral remotely sen sed data[J].Ecological Modelling,2002,157:301-312.
[21] Darvishsefat A Ali Tob ias W Kellenberger Klaus I Itten.Ap plication of hyperspectral data for forest stand mapping[C] //Symposium on Geospatial Theory,Processing and Ap plitions,Otawa,2002.
[22] Robert D A,Gardner M.Mapping chaparral in the Santa Monica Mountains using multiple endmem ber spectral mixing models[J].Remote Sensing of Environment,1997,65:267-279.
[23] Thenkabail P S,Enclona E A,Ashton M S,et al. Hyperion,IKONOS,ALI and ETM+sensors in the study of A frican rainforests[J].Remote sensing of Environment, 2004,90:23-43.
[24] Matthew L Clark,Dar A Roberts,David B Clark.H yperspectral discrmiination of tropical rain forest tree species at leaf to crown scales[J].Remote Sensing of Environment, 2005,96:375-398.
[25] 童庆禧,张兵,郑芬兰.高光谱遥感原理、技术与应用[M].北京:高等教育出版社,2006.
[26] Rick L Law rence,Shana D Wood,Roger L Sheley.Mapping in vasive plants using hyperspectra l miagery and Bremi an Cutler Class if ications(Random Forest)[J].Remote Sensing of Environment,2006,100:356-362.
[27] Grosholz E.Ecological and evolutionary consequences of coastal in vasions[J].Trends in Ecology and Evolution,2002,17:22-27.
[28] Under wood E,Susan Ustin,Deanne DiPietro.Mapping non native plants using hyperspectral miagery[J].Remote Sensing of Environment,2003,86:150-161.
[29] Yuki Hamada,Douglas A Stow,L loyd L Coulter,et al Detecting Tam arisk Species(Tam arix spp.)in riparian habitats of Southern California using high spatial reso lution hyperspectral Imagery[J].Remote Sensing of Environment,2007,doi:10.1016/.j rse.2007.01.003.
[30] Pengra B W,et al. Mapping an invasive plant Phragmites australis,in coastal wetlands using the EO-1 H yperion hyperspectral sensor[J].Remote Sensing of Environment do:i 10.1016/.j rse.2006.11.002.
[31] Mundt J T,Glenn N F,Weber K T,et al Discrimination of HGarciano,et al Estimation of Citrus yield from airborne hyperspectral miages using a Neura l Network Model[J].Ecologica l Modelling,2006,198:426-432.
[55] AnthonyM Filippi, John R Jensen.Fuzzy learning vector quantization for hyperspectral coastal vegetation classification[J].Remote Sensing of Environment, 2006,100:512-530.
[56] Chen C M,HepnerG F R R.Fusion of hypersp ectral and radar data using the HIS transformation to enhance urban surface features[J].ISPR S Journal of Photogramm etry&Remote Sensing,2003,58:19-30.y in Kosciuszko National Park,NSW,Australia[J].IS-PRS Journal of Photogramm etry & Remote Sensing,doi:10.1016/j. isprsjp rs.2007.01.004.
[34] Williams A P,Hunt Jr E R.Estmiation of Leafy Spurge cover from hyperspectral inagery using Mixture Tun ed Matched Filtering[J].Remote Sensing of Environment,2002,82(2-3):446-456.
[35] Sandmeier St Dering D W.Structure analysis and classification of boreal forests using a irborne hyperspectral BRD F data from ASAS[J].Remote Sensing of Environment,1999,69:281-295.
[36] Castro-Esau K L,G A S nchez-A zofeifa,T Caelli Discrimination of lianas and trees with leaf-level hyperspectral data[J].Remote Sensing of Environment, 2004,90:353-372.
[37] Gregory S O,Dar A Roberts,Bruce Murray,et al Practical lmiits on hyperspectral vegetation discrmiination in arid and semiarid environments[J].Remote Sensing of Environment,2001,77:212-225.
[38] M Kalacska,S Bonlman,G A Sanchez-A zofeifa,et al H yper spectral discrmiination of tropical dry forest lianas and trees:comparative data reduction approaches at the leaf and canopy levels[J].Remote Sensing of Environment,do:i 10.1016/j.rse.2007.01.012.
[39] Kyu-Sung Lee,Warren B Cohen,Robert E Kennedy,et al.H yperspectra l versus multispectral data for estim ating leaf area index in four different biomes[J].Remote Sensing of Environment,2004,91:508-520.
[40] Meroni M,Colombob R,Panigada C.Inversion of a radiative transfer model with hyp erspectral ob servations for LA Imapping in Poplar plantations[J].Remote Sensing of Environment 2004,92:195-206.
[41] Yen-Ben Cheng,Pablo J Zarco-Tejada,David Riano,et al.Estmiating vegetation water content with hyperspectral data for different canopy scenarios:relationships between AVIRIS and MODIS indexes[J].Remote Sensing of Environment,2006,105:354-366.
[42] Pab lo J Zarco-Te jada,John R Miller John Harron,et al.Needle Chlorophyll content estmiation through mod el inversion using hyperspectral data from boreal conifer forest canopies[J].Remote Sensing of Environment,2004,89:189-199.
[43] 谭昌伟,王纪华,黄文江,等.高光谱遥感在植被理化信息提取中的应用动态[J].西北农林科技大学学报(自然科学版),2005,33(5):151-156.
[44] Zhan-Yu Liu,Jing-Feng Huang,Xin-Hong Wu.Comparison of vegetation indices and Red-edge parameters fores tmiating grassland cover from canopy reflectance data[J].Journal of Integrative Plant Biology,2007,49(3):299-306.
[45] 浦瑞良,宫鹏.高光谱遥感及其应用[M].北京:高等教育出版社,2000.
[46] M E Martin,S D Newm an,J D Aber et al Detemrining forest species composition using high spectral resolution remote sensing data[J].Remote Sensing of Environment, 1998,65:249-254.
[47] O fer Beeri, R ebecca Phillips,John Hendrickson,et al Estimating forage quantity and quality using aerial hyperspectral miagery for northern mixed-grass prairie[J].Remote Sensing of Environment,2007,110:216-225.
[48] 王秀朋,张洪才,赵永强,等.基于投影寻踪的高光谱图像特征融合算法[J].计算机测量与控制,2006,14(11):1539-1541.
[49] 朱艳,刘晓莉,杨哲海.高光谱数据的降维及T abu搜索算法的应用[J].测绘科学技术学报,2007,24(1):22-25,29.
[50] Huang C,Townshend J A.A stepwise regression tree for nonlinear approx ination application to estmiating sub-pixel land cover[J].International Journal of Remote Sensing,2003,24(1):75-90.
[51] Ifarraguerri A,Chein-I Chang.Unsupervised hyperspectral miage analysis with projection pursuit[J].IEEE Trans Geoscience and Remote Sensing,2000,38(6):2529-2538.
[52] Penn B S.Using smiulated annealing to obtain optmial linear endmem berm ixtures of hyperspectral data[J].Computers&Geociences,2002,28:809-817.
[53] 陈尔学,李增元,谭炳香,等.高光谱数据森林类型统计模式识别方法比较评价[J].林业科学,2007,43(1):84-90.
[54] Xu jun Ye,Kenshi Sakai Leroy Ortega
PDF全文
浏览全文