数据资源: 科信所期刊全文

森林理化参数高光谱遥感反演研究进展



编号 lyqk005337

中文标题 森林理化参数高光谱遥感反演研究进展

作者 祁敏  张超 

作者单位 西南林业大学,昆明 650224;西南林业大学,昆明 650224

期刊名称 世界林业研究 

年份 2016 

卷号 29

期号 1

栏目编号 1

栏目名称 专题论述 

中文摘要 近年来,成像高光谱遥感技术在森林资源信息提取方面取得了进一步发展。文中介绍国内外在轨运行的主要机载和星载高光谱传感器及其技术参数;分别从叶面积指数和森林含水量反演及森林树种识别3个方面概述国内外基于高光谱遥感技术的森林物理参数反演方法及模型,从叶绿素含量及森林养分元素反演2个方面概述基于高光谱遥感技术的森林化学参数反演方法及模型;分析目前研究中存在的主要技术问题,并展望其应用和研究前景。

关键词 森林物理参数  森林化学参数  反演模型  高光谱遥感 

英文标题 Research Progress on Hyper-spectral Remote Sensing Retrieval for Forest Physical and Chemical Parameters

作者英文名 Qi Min and Zhang Chao

单位英文名 Southwest Forestry University,Kunming 650224,China;Southwest Forestry University,Kunming 650224,China

英文摘要 Imaging hyper-spectral remote sensing technology has recently made a rapid progress in the field of forest resources information extraction. The paper introduced the main airborne and spaceborne hyper-spectral sensors and their technical parameters at home and abroad. The retrieval methods and models for forest physical parameters based on hyper-spectral remote sensing technology were summarized in terms of leaf area index, forest water content and tree species identification. The retrieval methods and models for forest chemical parameters based on hyper-spectral remote sensing technology were also summarized in relation to chlorophyll content and forest nutrient elements. The main technical problems in the field were analyzed and the application prospect in forestry sector was discussed.

英文关键词 forest physical parameter;forest chemical parameter;retrieval model;hyper-spectral remote sensing

起始页码 52

截止页码 57

投稿时间 2015/3/31

分类号 S757

DOI 10.13348/j.cnki.sjlyyj.2016.01.006

参考文献 [1] 浦瑞良,宫鹏.高光谱遥感及其应用[M].北京:高等教育出版社,2000.
[2] 袁迎辉,林子瑜.高光谱遥感技术综述[J].中国水运,2007,7(8):155-157.
[3] 杨国鹏,余旭初,冯伍法,等.高光谱遥感技术的发展与应用现状[J].测绘通报,2008(10):1-4.
[4] 张佳华,杜育璋,刘学峰,等.基于高光谱数据和模型反演植被叶面积指数的进展[J].光谱学与光谱分析,2012,32(12):3319-3323.
[5] 浦瑞良,宫鹏.美国西部黄松叶面积指教与高光谱分辨率CASI数据的相关分析[J].环境遥感,1993,8(2):112-125.
[6] 邢丽玮,李小娟,李昂晟,等.基于高光谱与多光谱植被指数的洪河沼泽植被叶面积指数估算模型对比研究[J].湿地科学,2013,11(3):313-319.
[7] 陈丽,张晓丽,焦志敏.基于混合像元分解模型的森林叶面积指数反演[J].农业工程学报,2013,29(13):124-129.
[8] 汤旭光,刘殿伟,宋开山,等.东北主要绿化树种叶面积指数(LAI)高光谱估算模型研究[J].遥感技术与应用,2010,25(3):334-341.
[9] 赵虹,鲁蕾,颉耀文.基于PROSPECT+SAIL模型反演叶面积指数的较强适用性植被指数的筛选[J].兰州大学学报(自然科学版),2014, 50(1):89-94.
[10] 杨飞,张柏,刘殿伟,等.MODIS混合像元中居民地对玉米LAI和FPAR遥感估算影响[J].干旱地区农业研究,2010,28(2):243-248.
[11] JACQUEMOUD S,VERHOEF W,BARET F,et al.PROSPECT plus SAIL models:a review of use for vegetation characterization[J].Remote Sensing of Environment,2009,113(1):56-66.
[12] 沈艳,牛铮,颜春燕.植被叶片及冠层层次含水量估算模型的建立[J].应用生态学报,2005,16(7):1218-1223.
[13] 赵祥,王锦地,刘素红.耦合辐射传输模型的植被含水量遥感改进监测[J].红外与毫米波学报,2010,29(3):185-240.
[14] 李淑敏,李红,孙丹峰.PROSAIL冠层光谱模型遥感反演区域叶面积指数[J].光谱学与光谱分析,2009,29(10):2725-2729.
[15] SIMS D A,GAMON J A.Relationships between leaf pigment content and spectral reflectance across a wide range of species,leafstructures and developmental stages[J].Remote Sensing of Environment,2002,81(2):337-354.
[16] 李玉霞,杨武年,童玲,等.基于光谱指数法的植被含水量遥感定量检测与分析[J].光学学报,2009,29(5):1403-1407.
[17] 丁世飞,齐丙娟,谭红艳.支持向量机理论与算法研究综述[J].电子科技大学学报,2011,40(1):2-10.
[18] KUMAR T,PANIGRAHY S,KUMAR P,et al.Classification of floristic composition of mangrove forests using hyperspectral data:case study of Bhitarkanika National Park, India[J].Journal of Coastal Conservation,2013,17(1):121-132.
[19] 王圆圆,陈云浩,李京.基于支持向量机SVM特征加权选择的光谱匹配算法[J].光谱学与光谱分析,2009,29(3):735-739.
[20] MIRINK M,ANSLEY R J,STEDDOM K,et al.Remote distinction of a noxious weed(musk thistle:Carduus nutans) using airborne hyperspectral imagery and the support vector machine classifier[J].Remote Sensing,2013,5(2):612-630.
[21] ALONZO M,ROTH K,ROBERTS D. Identifying Santa Barbara's urban tree species from AVIRIS imagery using canonical discriminant analysis[J]. Remote Sensing Lerrers,2013,4(5):513-521.
[22] BANSKOTA A,WYNNE R H,KAYATKHA N.Improving within-genus tree species discrimination using the discrete wavelet transform applied to airborne hyperspectral data[J].International Journal of Remote Sensing,2011,32(13):3551-3563.
[23] LUCAS R,BUNTING P,PATERSON M,et al.Classification of Australian forest communicaties using aerial photography, CASI and HvMap data[J]. Remote Sensing of Environment,2008,112(5):2088-2103.
[24] ETTEIEB S,LOUHAICHI M,KALAITZIDIS C,et al.Mediterranean forest mapping using hyper-spectral satellite imagery[J].Arabian Journal of Geosciences,2013,6(12):5017-5032.
[25] 谭炳香.高光谱遥感森林类型识别及其郁闭度定量估测研究[D].北京:中国林业科学研究院, 2006.
[26] 于祥,张丰收,刘庆,等.典型红树林反射光谱特征分析研究[J].光谱学与光谱分析,2013,33(2):454-458.
[27] 肖艳芳.植被理化参数反演的尺度效应与敏感性分析[D].北京:首都师范大学,2013.
[28] 杨曦光,范文义,于颖.基于Hyperion数据的森林叶绿素含量反演[J].东北林业大学学报,2010,38(6):123-135.
[29] 宫兆宁,赵雅莉,赵文吉,等.基于光谱指数的植物叶片叶绿素含量的估算型[J].生态学报,2014,34(20):5736-5745.
[30] 张永贺.基于林木叶片光谱特征的生化组分估算模型探究[D].福州:福建师范大学,2013.
[31] 董晶晶,王力,牛铮.植被冠层水平叶绿素含量的高光谱估测[J].光谱学与光谱分析,2009,29(11):3003-3006.
[32] 刘璇,林辉,臧卓,等.杉木叶绿素a含量与高光谱数据相关性分析[J].中南林业科技大学学报, 2010, 30(5):72-76.
[33] YI Q X,HUANG J F,WANG F M,et al.Evaluating the performance of PC-ANN for the estimation of rice nitrogen concentration from canopy hyperspectral reflectance[J].International Journal of Remote Sensing,2010,31(4):931-940.
[34] CHANSEOK R,MASAHIKO S,MIKION U.Multivariate analysis of nitrogen content for rice at the heading stage using reflectance of airborne hyperspectral remote sensing[J].Field Crops Research,2011,122(3):214-224.
[35] 王黎雯,卫亚星.植被氮素浓度高光谱遥感反演研究进展[J].光谱学与光谱分析,2013,33(10):2823-2827.
[36] 熊英,刘波,岳跃民.基于ASD和FISS的植被叶片氮素含量反演研究[J].生态环境学报,2013,22(4):582-587.
[37] FAVA F,COLOMBO R,BOCCHI S,et al.Identification of hyperspectral vegetation indices for mediterranean pasture characterization[J]. International Journal of Applied Earth Observation and Geoinforrnation,2009,11(4):233-238.
[38] FITZGERALD G,RODRIGUEZ D,O'LEARY G.Messuring and predicting canopy nitrogen nutrition in wheat using a spectral index:the canopy chlorophyll content index(CCCI)[J].Field Crops Research,2010,116(3):318-324.
[39] 吴见,彭道黎.高光谱遥感林业信息提取技术研究进展[J].光谱学与光谱分析,2011,31(9):2305-2312.
[40] 李瑞平.高光谱林业遥感分类研究进展[J].安徽农业科学,2014,42(9):2801-2805.

PDF全文 浏览全文

相关图谱

扫描二维码