数据资源: 科信所期刊全文

森林冠层叶片氮浓度高光谱遥感反演研究进展



编号 lyqk008557

中文标题 森林冠层叶片氮浓度高光谱遥感反演研究进展

作者 于泉洲 

作者单位 聊城大学环境与规划学院, 山东聊城 252059

期刊名称 世界林业研究 

年份 2020 

卷号 33

期号 4

栏目编号 1

栏目名称 专题论述 

中文摘要 氮素是植物生命活动所需的重要营养元素,在森林植被的光合作用和生态系统固碳方面起着关键作用。因此,理解森林叶片氮浓度在叶片和冠层(遥感像元)尺度上的高光谱特征,是开展森林冠层叶片氮浓度(CNC)遥感反演、优化森林碳循环模拟、应对气候变化的重要基础工作。当前,森林CNC的光谱特征提取受到冠层结构因素的影响,其高光谱遥感反演的理论亦不明确。文中通过梳理国内外大量植被叶氮高光谱反演的代表性研究成果,以时间为轴线从叶片和冠层2个尺度上进行文献综述,详细阐述当前国内外森林叶氮浓度高光谱遥感反演的主要方法、研究热点和面临的问题,并对近年来学界关于森林冠层结构在冠层叶片氮浓度遥感反演中的影响进行综述,并展望森林冠层叶氮浓度高光谱遥感反演的发展方向。

关键词 森林冠层尺度  叶片尺度  叶片氮浓度  高光谱遥感 

基金项目 国家自然科学基金(31800367);中国科学院重点部署项目(KFZD-SW-310);聊城大学博士基金项目(318051530)。

英文标题 A Review of Hyperspectral Remote Sensing of Forest Canopy Foliar Nitrogen Concentration

作者英文名 Yu Quanzhou

单位英文名 School of Environment and Planning, Liaocheng University, Liaocheng 252059, Shandong, China

英文摘要 Nitrogen is an important nutrient for plant life and activities and plays a key role in photosynthesis of forest vegetation and carbon sequestration of forest ecosystem. Therefore, the understanding of the hyperspectral characteristics of foliar nitrogen concentration on the scales of leaf and canopy (remote sensing pixels) is the base to carry out remote sensing inversion of forest canopy nitrogen concentration (CNC), optimize forest carbon cycle simulation and address climate change. At present, the spectral feature extraction of forest CNC is disturbed by canopy structure, and the theory of CNC remote sensing inversion is not clear. Therefore, the paper makes a literature review of the representative studies at home and abroad about hyperspectral inversion of leaf nitrogen in vegetation on the two scales of leaf and canopy with time as the axis. Then it elaborates the main methods, research hotspots and existing problems of hyperspectral remote sensing inversion of leaf nitrogen concentration, reviews the academic debates about the effect of forest canopy structure on this remote sensing inversion. At the end, the development direction of hyperspectral remote sensing inversion of CNC is prospected.

英文关键词 forest canopy scale;leaf scale;leaf nitrogen concentration;hyperspectral remote sensing

起始页码 43

截止页码 49

投稿时间 2019/10/12

最后修改时间 2019/11/16

作者简介 于泉洲,男,山东济南人,博士,讲师,研究方向:林业高光谱遥感,E-mail:yuquanzhou2008@126.com。

分类号 S718.43;S771.8

DOI 10.13348/j.cnki.sjlyyj.2020.0010.y

参考文献 [1] REICH P B,KLOEPPEL B D, ELLSWORTH D S,et al.Different photosynthesis-nitrogen relations in deciduous hardwood and evergreen coniferous tree species[J].Oecologia,1995,104:24-30.
[2] LUO Y Q,RANDERSON J T,ABRAMOWITZ G,et al.A framework for benchmarking land models[J]. Biogeosciences,2012,9(10):3857-3874.
[3] WESSMAN C A,ABER J D,PETERSON D L,et al.Remote sensing of canopy chemistry and nitrogen cycling in temperate forest ecosystems[J].Nature,1988,335:154-156.
[4] MARTIN M E,PLOURDE L C,OLLINGER S V,et al.A generalizable method for remote sensing of canopy nitrogen across a wide range of forest ecosystems[J]. Remote Sensing of Environment, 2008, 112(9):3511-3519.
[5] OLLINGER S V,RICHARDSON A D,MARTIN M E,et al.Canopy nitrogen, carbon assimilation, and albedo in temperate and boreal forests:functional relations and potential climate feedbacks[J].Proceedings of the National Academy of Sciences,2008, 105(49):19336-19341.
[6] LEPINE L C,OLLINGER S V,OUIMETTE A P,et al.Examining spectral reflectance features related to foliar nitrogen in forests:implications for broad-scale nitrogen mapping[J].Remote Sensing of Environment,2016,173:174-186.
[7] KOKALY R F,ASNER G P,OLLINGER S V,et al.Characterizing canopy biochemistry from imaging spectroscopy and its application to ecosystem studies[J].Remote Sensing of Environment,2009,113:S78-S91.
[8] BARTLETT M K,OLLINGER S V,HOLLINGER D Y,et al.Canopy-scale relationships between foliar nitrogen and albedo are not observed in leaf reflectance and transmittance within temperate deciduous tree species[J].Botany,2011,89(7):491-497.
[9] KNYAZIKHIN Y,SCHULL M A,STENBERG P,et al.Hyperspectral remote sensing of foliar nitrogen content[J].Proceedings of the National Academy of Sciences, 2012,110(3):E185-E192.
[10] USTIN S L. Remote sensing of canopy chemistry[J]. Proceedings of the National Academy of Sciences, 2013, 110(3):804-805.
[11] OLLINGER S V,REICH P B,FROLKING S,et al.Nitrogen cycling, forest canopy reflectance,and emergent properties of ecosystems[J].Proceedings of the National Academy of Sciences, 2013, 110(27):E2437. DOI:10.1073/pnas.1304176110.
[12] CURRAN P J. Remote sensing of foliar chemistry[J]. Remote Sensing of Environment,1989,30(3):271-278.
[13] WESSMAN C A,ABER J D,PETERSON D L,et al.Foliar analysis using near infrared reflectance spectroscopy[J].Canadian Journal of Forest Research,1988,18(1):6-11.
[14] PETERSON D L,ABER J D,MATSON P A,et al.Remote sensing of forest canopy and leaf biochemical contents[J].Remote Sensing of Environment,1988,24(1):85-108.
[15] YODER B J,PETTIGREW-CROSBY R E.Predicting nitrogen and chlorophyll content and concentrations from reflectance spectra (400-2500 nm) at leaf and canopy scales[J]. Remote Sensing of Environment,1995,53(3):199-211.
[16] KOKALY R F,CLARK R N.Spectroscopic determination of leaf biochemistry using band-depth analysis of absorption features and stepwise multiple linear regression[J].Remote Sensing of Environment,1999,67(3):267-287.
[17] CURRAN P,DUNGAN J,PETERSON D.Estimating the foliar biochemical concentration of leaves with reflectance spectrometry:testing the Kokaly and Clark methodologies[J]. Remote Sensing of Environment,2001,76(3):267-287.
[18] MARTIN M E,ABER J D.Analyses of forest foliage:III. determining nitrogen, lignin and cellulose in fresh leaves using near infrared reflectance data[J].Journal of Near Infrared Spectroscopy,1994,2(1). DOI:10.1255/jnirs.28.
[19] GITELSON A A,GRITZ Y,MERZLYAK M N.Relationships between leaf chlorophyll content and spectral reflectance and algorithms for non-destructive chlorophyll assessment in higher plant leaves[J].Journal of plant physiology,2003,160(3):271-282.
[20] CHANG S X,ROBISON D J.Nondestructive and rapid estimation of hardwood foliar nitrogen status using the SPAD-502 chlorophyll meter[J].Forest Ecology and Management,2003,181(3):331-338.
[21] CHAVANA-BRYANT C,YADVINDER M,ATHANASIOS A.Leaf age effects on the spectral predictability of leaf traits in Amazonian canopy trees[J].Science of the Total Environment,2019,666:1301-1315.
[22] VERDEBOUT J,JACQUEMOUD S,SCHMUCK G.Optical properties of leaves:modelling and experimental studies[M].Dordrecht:Springer,1994:169-191.
[23] JACQUEMOUD S,USTIN S L,VERDEBOUT G S.Estimating leaf biochemistry using the PROSPECT leaf optical properties model[J].Remote Sensing of Environment,1996,56(3):194-202.
[24] JACQUEMOUD S,VERHOEF W,BARET F,et al.PROSPECT+SAIL models:a review of use for vegetation characterization[J]. Remote Sensing of Environment,2009,113(Suppl1):S56-S66.
[25] WANG B,CHEN J,JU W,et al.Limited effects of water absorption on reducing the accuracy of leaf nitrogen estimation[J]. Remote Sensing,2017,9(3):291.
[26] 刘厚田,张维平,于亚平,等.土壤镉污染对水稻叶片光谱反射特性的影响[J].生态学报,1986,6(2):89-100.
[27] 牛铮,陈永华,隋洪智,等.叶片化学组分成像光谱遥感探测机理分析[J].遥感学报,2000,4(2):125-130.
[28] 宋开山,张柏,王宗明,等.大豆叶绿素含量高光谱反演模型研究[J].农业工程学报,2006, 22(8):16-21.
[29] 宫兆宁,赵雅莉,赵文吉,等.基于光谱指数的植物叶片叶绿素含量的估算模型[J].生态学报, 2014, 34(20):5736-5745.
[30] 李萍,柴仲平,武红旗,等.基于光谱的库尔勒香梨叶片氮素含量估算模型[J].经济林研究,2013,31(3):48-53.
[31] 岳学军,全东平,洪添胜,等.柑橘叶片叶绿素含量高光谱无损检测模型[J].农业工程学报,2015,31(1):294-302.
[32] 宋晓东,江洪,余树全,等.亚热带典型常绿阔叶树种叶片叶绿素含量与其高光谱特征间的关系[J].生态学报,2008, 28(5):1959-1963.
[33] 卢万鸿,杨桂丽,林彦,等.桉树叶片水分状态的近红外光谱检测[J].林业科学,2017,53(5):16-22.
[34] 梁守真,施平,马万栋,等.植被叶片光谱及红边特征与叶片生化组分关系的分析[J].中国生态农业学报,2010,18(4):804-809.
[35] ROCK B N,HOSHIZAKI T,MILLER J R.Comparison of in situ and airborne spectral measurements of the blue shift associated with forest decline[J]. Remote Sensing of Environment,1988, 24(1):109-127.
[36] MARTIN M E,ABER J D.High spectral resolution remote sensing of forest canopy lingnin,nitrogen and ecosystem processes[J]. Ecological Applications,1997,7(2):431-443.
[37] SMITH M L,MARTIN M E,PLOURDE L,et al.Analysis of hyperspectral data for estimation of temperate forest canopy nitrogen concentration:comparison between an airborne (AVIRIS) and a spaceborne (Hyperion) sensor[J].IEEE Transactions on Geoscience and Remote Sensing,2003,41(6):1332-1337.
[38] HUANG Z,TURNER B J,DURY S J,et al.Estimating foliage nitrogen concentration from HYMAP data using continuum removal analysis[J]. Remote Sensing of Environment, 2004, 93(1/2):18-29.
[39] HOLLINGER D Y,OLLINGER S V,RICHARDSON A D,et al.Albedo estimates for land surface models and support for a new paradigm based on foliage nitrogen concentration[J].Global Change Biology,2010,16(2):696-710.
[40] GÖKKAYA K,THOMAS V,NOLAND T,et al.Mapping continuous forest type variation by means of correlating remotely sensed metrics to canopy N:P ratio in a boreal mixedwood forest[J]. Applied Vegetation Science,2015,18(1):143-157.
[41] ASNER G P,KNAPP D E,BOARDMAN J,et al.Carnegie Airborne Observatory-2:increasing science data dimensionality via high-fidelity multi-sensor fusion[J]. Remote Sensing of Environment,2012,124:454-465.
[42] ASNER G P,MARTIN R E,ANDERSON C B,et al.Scale dependence of canopy trait distributions along a tropical forest elevation gradient[J]. New Phytologist,2017,214(3):973-988.
[43] ASNER G P,MARTIN R E,KNAPP D E,et al.Airborne laser-guided imaging spectroscopy to map forest trait diversity and guide conservation[J]. Science,2017,355(6323):385-389.
[44] 谭炳香,李增元,陈尔学,等. Hyperion高光谱数据森林郁闭度定量估测研究[J].北京林业大学学报,2006,28(3):95-101.
[45] 林辉,刘璇,臧卓,等.杉木叶绿素含量高光谱遥感模型研究[J].中南林业科技大学学报,2010,30(11):1-5.
[46] 徐光彩,庞勇,李增元,等.小兴安岭主要树种冠层光谱季相变化研究[J].光谱学与光谱分析,2013,33(12):3303-3307.
[47] 于泉洲,王绍强,黄昆,等.基于Hyperion高光谱数据的温带森林不同冠层结构的光谱特征分析[J].光谱学与光谱分析,2015, 35(7):1980-1985.
[48] 李军玲,庞勇,李增元,等.机载AISA Eagle Ⅱ高光谱数据在温带天然林树种分类中的应用[J].东北林业大学学报,2019,47(5):72-76.
[49] 沈艳.植被生化组分高光谱遥感定量反演研究:以西双版纳地区为例[D].南京:南京信息工程大学,2006.
[50] 袁金国,牛铮.基于HYPERION高光谱图像的氮和叶绿素制图[J].农业工程学报, 2007,23(4):172-179.
[51] YU Q Z,WANG S Q,SHI H,et al. Evaluation of spaceborne imaging spectrometry for estimation of forest canopy nitrogen concentration in a subtropical conifer plantation of southern china[J]. Journal of Resources and Ecology,2014,5(1):1-10.
[52] 于泉洲,刘煜杰,周蕾,等.基于遥感反演的中国森林冠层叶氮浓度空间格局初步研究[J].中南林业科技大学学报,2019, 39(12):93-100.
[53] CHEN K,LI C,TANG R.Estimation of the nitrogen concentration of rubber tree using fractional calculus augmented NIR spectra[J]. Industrial Crops & Products,2017,108:831-839.
[54] VERHOEF W.Light scattering by leaf layers with application to canopy reflectance modeling:the SAIL Model[J].Remote Sensing of Environment,1984,16(2):125-141.
[55] 杨曦光,范文义,于颖.基于PROSPECT+ SAIL模型的森林冠层叶绿素含量反演[J].光谱学与光谱分析,2010,30(11):3022-3026.
[56] WANG Z H,ANDREW K S,ROSHANAK D,et al.Mapping forest canopy nitrogen content by inversion of coupled leaf-canopy radiative transfer models from airborne hyperspectral imagery[J].Agricultural and Forest Meteorology,2018,253/254:247-260.
[57] HOMOLOVÁ L,MALENOVSK Z,CLEVERS J G P W,et al.Review of optical-based remote sensing for plant trait mapping[J].Ecological Complexity,2013,15:1-16.
[58] KNYAZIKHIN Y,LEWIS P,DISNEY M I,et al.Reply to Ollinger et al:remote sensing of leaf nitrogen and emergent ecosystem properties[J].Proceedings of the National Academy of Sciences, 2013,110(27):E2438. DOI:10.1073/pnas.1305930110.
[59] MCNEIL B,BRESLOW B,AMY H,et al.Are nitrogen availability,forest carbon uptake, and canopy albedo enhanced along a nitrogen deposition gradient in the central Appalachian Mountains?[EB/OL].[2019-08-11].https://cceo.gsfc.nasa.gov/mtg2011_ab_presentations/2011_Poster_McNeil_238_191.pdf. 2011/2019.
[60] OLLINGER S V. Sources of variability in canopy reflectance and the convergent properties of plants[J].New Phytologist,2011, 189(2):375-394.
[61] KNYAZIKHIN Y,LEWIS P,DISNEY M I,et al.Reply to Townsend et al:decoupling contributions from canopy structure and leaf optics is critical for remote sensing leaf biochemistry[J]. Proceedings of the National Academy of Sciences,2013,110(12):E1075.
[62] TOWNSEND P A,SERBIN S P,KRUGER E L,et al.Disentangling the contribution of biological and physical properties of leaves and canopies in imaging spectroscopy data[J].Proceedings of the National Academy of Sciences,2013,110(12):E1074. DOI:10.1073/pnas.1300952110.
[63] ANTONARAKIS A S,MUNGER J W,MOORCROFT P R.Imaging spectroscopy-and lidar-derived estimates of canopy composition and structure to improve predictions of forest carbon fluxes and ecosystem dynamics[J]. Geophysical Research Letters, 2014, 41(7):2535-2542.
[64] WANG Z,SKIDMORE A K,WANG T,et al.Canopy foliar nitrogen retrieved from airborne hyperspectral imagery by correcting for canopy structure effects[J]. International Journal of Applied Earth Observation and Geoinformation,2017,54:84-94.
[65] GARA T W,ANDREW K S, DARVISHZADEH R,et al. Leaf to canopy upscaling approach affects the estimation of canopy traits[J]. GIScience & Remote Sensing,2019,56(4):554-575.
[66] WANG Z,WANG T,DARVISHZADEH R,et al.Vegetation indices for mapping canopy foliar nitrogen in a mixed temperate forest[J].Remote Sensing, 2016, 8(6):491.
[67] YU Q Z,WANG S Q,ZHOU L.Investigation into the role of canopy structure traits and plant functional types in modulating the correlation between canopy nitrogen and reflectance in a temperate forest in northeast China[J].Journal of Applied Remote Sensing,2017,11(4):046013.DOI:10.1117/1.JRS.11.046013.
[68] EITEL J U H,HÖFLE B,VIERLING L A,et al.Beyond 3-D:the new spectrum of lidar applications for earth and ecological sciences[J]. Remote Sensing of Environment, 2016, 186:372-392.
[69] WANG J,CHEN Y,CHEN F,et al.Wavelet-based coupling of leaf and canopy reflectance spectra to improve the estimation accuracy of foliar nitrogen concentration[J]. Agricultural and Forest Meteorology,2018,248:306-315.
[70] HILKER T,NESIC Z,COOPS N C,et al. A new, automated, multiangular radiometer instrument for tower-based observations of canopy reflectance (AMSPEC II)[J]. Instrumentation Science and Technology,2010,38(5):319-340.
[71] ZHANG Q,JU W,CHEN J,et al.Ability of the photochemical reflectance index to track light use efficiency for a sub-tropical planted coniferous forest[J]. Remote Sensing,2015,7(12):16938-16962.
[72] 李焱沐,王绍强,钱钊晖,等.亚热带针阔混交林光化学植被指数与光能利用效率关系研究[J].地理研究,2017,36(11):2239-2250.
[73] SUN L G,WANG S Q,ROBERT A M,et al.Remote sensing indices to measure the seasonal dynamics of photosynthesis in a southern china subtropical evergreen forest[J].Journal of Resources and Ecology,2019,10(2):112-126.

PDF全文 浏览全文

相关图谱

扫描二维码