数据资源: 科信所期刊全文

应力波木材无损检测技术应用及研究进展



编号 lyqk008619

中文标题 应力波木材无损检测技术应用及研究进展

作者 孙丽萍  许述正  魏喜雯  岳琪  王一凡 

作者单位 东北林业大学, 哈尔滨 150040

期刊名称 世界林业研究 

年份 2020 

卷号 33

期号 6

栏目编号 1

栏目名称 专题论述 

中文摘要 文中概述了应力波传播机理及应力波木材无损检测技术的优缺点与工作过程,介绍了现阶段木材无损检测领域内常用的几种应力波木材检测设备,对其特点进行了分析,并从力学性能检测、内部缺陷检测和影响应力波传播速度的因素3个方面对应力波木材无损检测技术的研究进展进行总结分析,预测其发展前景,以期为该领域的进一步研究提供参考。

关键词 应力波  木材检测  无损检测  成像技术 

基金项目 国家林业局林业公益性行业科研专项(201304502);2020年度黑龙江省省属本科高校基本科研业务费项目。

英文标题 Application of Stress Wave Wood Nondestructive Testing Technology and Its Research Progress

作者英文名 Sun Liping, Xu Shuzheng, Wei Xiwen, Yue Qi, Wang Yifan

单位英文名 Northeast Forestry University, Harbin 150040, China

英文摘要 The paper reviews the propagation mechanism of stress wave and the advantages, disadvantages and working processes of stress wave wood non-destructive testing technology. It also introduces stress wave wood testing facilities, which are commonly used in the field of wood non-destructive testing, and analyzes their characteristics. The progress of this technology research is summarized and analyzed from three aspects of mechanical property testing, internal defect detection and factors affecting stress wave propagation velocity. The development prospects of stress wave wood non-destructive testing technology is prospected, in order to provide references for the further research in this field.

英文关键词 stress wave;wood testing;non-destructive testing;imaging technology

起始页码 39

截止页码 43

投稿时间 2020/1/15

最后修改时间 2020/7/22

作者简介 孙丽萍,女,教授,博士研究生导师,主要研究方向为智能检测,模式识别,木材科学与技术,E-mail:zdhslp@163.com。

通讯作者介绍 岳琪,女,教授,硕士研究生导师,主要研究方向为人工智能与智能控制,管理优化,E-mail:yueqi@nefu.edu.cn。

E-mail 岳琪,女,教授,硕士研究生导师,主要研究方向为人工智能与智能控制,管理优化,E-mail:yueqi@nefu.edu.cn。

分类号 S781.5

DOI 10.13348/j.cnki.sjlyyj.2020.0077.y

参考文献 [1] BRODA M, MAZELA B, KROLIKOWSKA-PATARAJA K, et al. The use of FT-IR and computed tomography non-destructive technique for waterlogged wood characterisation[J].Wood Research, 2015(5):707-722.
[2] ZHANG J, XU Q, XU Y, et al. Research on residual bending capacities of used wood members based on the correlation between non-destructive testing results and the mechanical properties of wood[J].Journal of Zhejiang University(Science A:Applied Physics & Engineering), 2015,16(7):541-550.
[3] POTAPOV A I,MAKHOV V E.Methods for nondestructive testing and diagnostics of durability of articles made of polymer composite materials[J].Russian Journal of Nondestructive Testing,2018,54(3):151-163.
[4] 苗媛媛,刘一星,刘镇波,等.木质材料缺陷无损检测主要研究进展[J].世界林业研究,2008,21(5):44-50.
[5] 孙建平,王逢瑚,朱晓东,等.声发射检测技术及其在木质材料无损检测中应用的展望[J].世界林业研究,2006,19(2):55-60.
[6] 王志玲,王正,王元秀,等.现代近红外光谱技术:人造板性能无损检测的新方法[J].世界林业研究,2004,17(6):22-24.
[7] 胡英成,顾继友,王逢瑚.木材及人造板物理力学性能无损检测技术研究的发展与展望[J].世界林业研究,2002,15(4):39-46.
[8] 尚大军,段新芳,杨中平.应力波无损检测技术及其在木结构古建筑保护中的应用[J].世界林业研究,2008,21(2):44-48.
[9] ZORIN V A,BAUROVA N I,KOSENKO E A.Detection of defects in components made of dispersion-filled polymeric materials by the method of infrared thermography[J].Polymer Science(Series D), 2017, 10(3):241-243.
[10] VÖSSING K J,GAAL M,NIEDERLEITHINGER E.Air-coupled ferroelectret ultrasonic transducers for nondestructive testing of wood-based materials[J].Wood Science and Technology, 2018, 52(6):1527-1538.
[11] MCKINLEY P,KAMKE F A,SINHA A,et al.Analysis of adhesive penetration into wood using nano-X-ray computed tomography[J].Wood and Fiber Science, 2018, 50(1):66-76.
[12] 安源,殷亚方,姜笑梅,等.应力波和阻抗仪技术勘查木结构立柱腐朽分布[J].建筑材料学报,2008(4):457-463.
[13] 王立海,王洋,高珊,等.冻结状态下应力波在长白落叶松立木中传播速度的研究[J].北京林业大学学报,2009,31(3):96-99.
[14] 高珊,王立海,王洋,等.应力波在立木冻结与常温状态下的传播速度比较[J].林业科学,2010,46(10):124-129.
[15] 肖江,杨建华,李黎.基于单片机的单板层积材抗弯强度应力波波速检测系统[J].木材加工机械, 2008, 19(1):1-5.
[16] 安源.基于应力波的木材缺陷二维成像技术研究[D].北京:中国林业科学研究院,2013.
[17] GUNTEKIN E,EMIROGLU Z G,YILMAZ T. Prediction of bending properties for turkish red Pine (Pinus brutia Ten.) lumber using stress wave method[J].BioResources, 2013, 8(1):231-237.
[18] LI G, WANG X, FENG H, et al. Analysis of wave velocity patterns in black cherry trees and its effect on internal decay detection[J].Computers and Electronics in Agriculture, 2014:104:32-39.
[19] 徐华东,王立海,游祥飞,等.应力波在旱柳立木内的传播规律分析及其安全评价[J].林业科学,2010,46(8):145-150.
[20] DACKERMANN U,CREWS K,KASAL B,et al. In situ assessment of structural timber using stress-wave measurements[J].Materials and Structures, 2014, 47(5):787-803.
[21] LIN C J,CHANG T T,JUAN M Y,et al.Stress wave tomography for the quantification of artificial hole detection in camphor trees (Cinnamomum camphora)[J].Taiwan Journal of Forest Science, 2011, 26(1):17-32.
[22] MCDONALD K A,GREEN D W,SCHAD K C.Relationship between log and lumber modulus of elasticity[J].Forest Products Journal,1997,47(2):89-92.
[23] ROSS R J,YANG V W,ILLMAN B L,et al.Relationship between stress wave transmission time and bending strength of deteriorated oriented strandboard[J].Forest Products Journal, 2003, 53(3):33-35.
[24] BRASHAW B K,WANG X,ROSS R J,et al. Relationship between stress wave velocities of green and dry veneer[J].Forest Products Journal, 2004,54(6):85-89.
[25] ISHIGURI F,MATSUI R,IIZUKA K,et al. Prediction of the mechanical properties of lumber by stress-wave velocity and Pilodyn penetration of 36-year-old Japanese larch trees[J].Holz als Roh-und Werkstoff, 2008, 66(4):275-280.
[26] 冯海林,李光辉,方益明,等.应力波传播模型及其在木材检测中的应用[J].系统仿真学报,2010(6):1490-1493.
[27] 刘光林,李光辉,孙晔,等.树木内部应力波传播速度模型[J].浙江农林大学学报,2015,32(1):18-24.
[28] 张春晓,冯海林,李光辉,等.应力波在树木不同角度纵截面的传播速度模型[J].浙江农林大学学报,2017,34(5):926-933.
[29] BULLEIT W M,FALK R H.Modeling stress wave passage times in wood utility poles[J].Wood Science and Technology,1985,19(2):183-191.
[30] 梁善庆,胡娜娜,林兰英,等.古树名木健康状况应力波快速检测与评价[J].木材工业,2010,24(3):13-15.
[31] 郑泽宇,冯海林,杜晓晨,等.木材径切面内部缺陷的应力波成像算法[J].浙江农林大学学报,2019,36(2):211-218.
[32] WEI X,SUN L,SUN Q,et al.Propagation velocity model of stress wave in longitudinal section of tree in different angular directions[J].BioResources, 2019, 14(4):8904-8922.
[33] DU X,LI S,LI G,et al.Stress wave tomography of wood internal defects using ellipse-based spatial interpolation and velocity compensation[J].BioResources,2015,10(3):3948-3962.
[34] FENG H,LI G,FU S,et al.Tomographic image reconstruction using an interpolation method for tree decay detection[J].BioResources, 2014, 9(2):3248-3263.
[35] 陈方翔,冯海林,杜晓晨,等.基于TIDW的木材内部缺陷三维应力波成像方法[J].传感技术学报,2015,28(11):1625-1633.
[36] DU X C,FENG H L,HU M Y,et al.Three-dimensional stress wave imaging of wood internal defects using TKriging method[J].Computers and Electronics in Agriculture, 2018,148:63-71.
[37] 刘丰禄,姜芳,王喜平,等.应力波在落叶松活立木中的传播规律[J].南京林业大学学报(自然科学版),2017,41(3):133-139.
[38] 杨学春,罗菊英.杨树与落叶松原木中应力波的不同传播速度[J].林业科学,2011,47(5):96-100.
[39] LI G H,WENG X,DU X C,et al.Stress wave velocity patterns in the longitudinal-radial plane of trees for defect diagnosis[J].Computers and Electronics in Agriculture, 2016,124:23-28.
[40] GAO X,LI Q,CHENG W,et al.Effects of moisture content, wood species, and form of raw materials on fiber morphology and mechanical properties of wood fiber-HDPE composites[J].Polymer Composites,2018,39(9):3236-3246.
[41] 翁翔,李光辉,冯海林,等.应力波在树木径切面内的传播速度模型[J].林业科学,2016,52(7):104-112.
[42] 王立海,王洋,徐华东.弦向角对应力波在原木横截面传播速度的影响[J].林业科学,2011,47(8):139-142.
[43] 徐华东,徐国祺,王立海,等.原木横截面应力波传播时间等值线绘制及影响因素分析[J].林业科学,2014,50(4):95-100.
[44] 刘昊,高建民.含水率和密度对木材应力波传播速度的影响[J].北京林业大学学报,2014,36(6):154-158.
[45] 戴俭,常丽红,钱威,等.古建筑木构件内部缺陷无损检测的方法与应用研究[J].建筑学报, 2017(2):7-10.
[46] 王再超,李光辉,冯海林,等.基于应力波和支持向量机的木材缺陷识别分类方法[J].南京林业大学学报(自然科学版),2015,39(3):130-136.

PDF全文 浏览全文

相关图谱

扫描二维码