编号
lyqk004742
中文标题
声发射技术在木材加工领域的应用
作者单位
西南林业大学机械与交通学院,昆明653224;西南林业大学机械与交通学院,昆明653224;西南林业大学机械与交通学院,昆明653224;西南林业大学机械与交通学院,昆明653224
期刊名称
世界林业研究
年份
2015
卷号
28
期号
1
栏目编号
1
栏目名称
专题论述
中文摘要
作为一种主动无损检测方式,声发射技术通过分析被测物体内部因能量变化所引发的弹性波的特征,判断物体内部损伤程度并确定损伤位置。声发射技术为木材加工过程应力监测提供了一种主动无损检测模式,但受木材自身各向异性等特点的限制,目前声发射技术在木材工业中的应用尚处于探索阶段。为此,文中重点介绍了目前声发射技术在木材切削加工、木材及木质结构、木材力学性能、木材干燥过程等木材加工过程的应用现状,并在此基础上根据木材声发射信号特点,提出一种基于LabView及高速采集设备的木材干燥过程声发射监测系统设计方案。
关键词
声发射技术
木材加工
木材干燥
无损检测
LabView
基金项目
国家自然科学基金资助项目(31100424);云南省教育厅科学研究基金(2013J018)
英文标题
Application of Acoustic Emission in Wood Processing
作者英文名
Shen Kenan,Zhao Hailong,Ding Xinzeng and Li Ming
单位英文名
College of Machinery and Transportation,Southwest Forestry University,Kunming 653224,China;College of Machinery and Transportation,Southwest Forestry University,Kunming 653224,China;College of Machinery and Transportation,Southwest Forestry University,Kunming 653224,China;College of Machinery and Transportation,Southwest Forestry University,Kunming 653224,China
英文摘要
As an active non-destructive testing method, acoustic emission is adopted to determine the extent of damage inside an object as well as the damage location by analyzing the characteristics of the elastic wave within an object caused by internal energy changes.Acoustic emission provides an active non-destructive testing mode for the monitoring of wood processing stress. However, limited by the anisotropic characteristics of wood itself, the application of acoustic emission technology in wood industry is still at the exploratory stage. Therefore, this article focused on the current application of acoustic emission technology in wood cutting, wood and wooden texture structure, mechanical properties of wood, wood drying process, etc. On this basis, the design plan for acoustic emission monitoring system over wood drying process was proposed based on LabView and high-speed capture devices according to the wood acoustic emission signal characteristics.
英文关键词
acoustic emission;wood processing;wood drying;non-destructive testing;LabView
起始页码
56
截止页码
60
投稿时间
2014/6/27
分类号
S781.71;TS652
DOI
10.13348/j.cnki.sjlyyj.2015.01.008
参考文献
[1] Ciampa F, Meo M. Acoustic emission source localization and velocity determination of the fundamental mode A0 using wavelet analysis and a Newton-based optimization technique[J]. Smart Materials and Structures, 2010, 19(4): 045027.doi:10.1088/0964-1726/19/4/045027.
[2] Mohd S, Holford K M, Pullin R. Continuous wavelet transform analysis and modal location analysis acoustic emission source location for nuclear piping crack growth monitoring[C] //Advancing Nuclear Research And Energy Ddvelopment: Proceedings of the International Nuclear Science, Technology & Engineering Conference 2013 (iNuSTEC2013). AIP Publishing, 2014: 61-68.
[3] Kim J S, Choi Y C, Choi J W, et al. A combined method of Wigner-Ville distribution with a theoretical model for acoustic emission source location in a dispersive media[J]. KSCE Journal of Civil Engineering, 2013, 17(6): 1284-1292.
[4] Bua Nunez I, Roman J E P, Rubio Serrano J, et al. Multichannel acquisition system and denoising for the detection and location of partial discharges using acoustic emissions[C].Instrumentation and Measurement Technology Conference (I2MTC), 2013 IEEE International. IEEE, 2013: 1135-1140.
[5] Yang R, Ren M. Wavelet denoising using principal component analysis[J]. Expert Systems with Applications, 2011, 38(1): 1073-1076.
[6] Satour A, Montrésor S, Bentahar M, et al. Acoustic emission signal denoising to improve damage analysis in glass fibre-reinforced composites[J]. Nondestructive Testing and Evaluation, 2014, 29(1): 65-79.
[7] Chiementin X, Mba D, Charmley B, et al. Effect of the denoising on acoustic emission signals[J]. Journal of Vibration and Acoustics, 2010, 132(3): 031009.doi:10.11511.4000789.
[8] Chen Z, Gabbitas B, Hunt D. Monitoring the fracture of wood in torsion using acoustic emission[J]. Journal of Materials Science, 2006, 41(12): 3645-3655.
[9] Ando K, Hirashima Y, Sugihara M, et al. Microscopic processes of shearing fracture of old wood, examined using the acoustic emission technique[J]. Journal of Wood Science, 2006, 52(6): 483-489.
[10] 钟卫洲, 宋顺成, 黄西成. 三种加载方向下云杉静动态力学性能研究[J]. 力学学报, 2011, 43(6): 1141-1150.
[11] 郭晓磊,郭勇,胡伟,等.木基复合材料破坏过程中声发射特性的研究[J].南京林业大学学报,2011,35(3):97-100.
[12] Tanaka C,Zhao C,Nakao T,et al.An automatic control of the feed-rate of a band-saw for wood working[J]. Mokuzai Gakkaish,1992,38(12):1172-1174.
[13] Zhu K, Wong Y S, Hong G S. Wavelet analysis of sensor signals for tool condition monitoring: a review and some new results[J]. International Journal of Machine Tools and Manufacture, 2009, 49(7): 537-553.
[14] Zhao C R.Adaptive control optimization in band sawing II[J].Mokuzai Gakkaishi,1992,38(8):771-776.
[15] 齐英杰, 赵越, 杨春梅. 超细木粉机切削主轴有限元分析与实验论证[J]. 木材加工机械, 2013, 24(3): 1-4.
[16] 孙建平,王逢瑚,胡英成,等.基于声发射和神经网络的木材受力损伤过程检测[J]. 仪器仪表学报,2011,32(2 ): 342-347.
[17] 朱红娟.基于小波神经网络木质材料无损检测方法研究[D].北京: 北京林业大学,2007.
[18] Aicher S, Höfflin L, Dill-Langer G. Damage evolution and acoustic emission of wood at tension perpendicular to fiber[J]. European Journal of Wood and Wood Products, 2001, 59(1): 104-116.
[19] 张志研. 木材损伤的声发射特征及裂纹扩展机理研究[D]. 北京: 北京林业大学, 2009.
[20] 丁小康, 张祥雪, 郝燕华. 木材干燥过程中声发射信号分析[J].木材工业, 2012, 26(3): 40-43.
[21] 孟兆新. 木材干燥的多场耦合建模仿真与优化研究[D]. 哈尔滨:东北林业大学, 2011.
[22] Tiitta M, Tomppo L, Lappalainen R. Combined acoustic and electric method for monitoring wood drying process: a review[J]. Wood Material Science and Engineering, 2010, 5(2): 78-83.
[23] 孙丽萍, 张冬妍. 基于分层信息融合的木材干燥过程含水率在线检测[J]. 农业工程学报, 2013, 29(增刊1): 257-263.
PDF全文
浏览全文