数据资源: 科信所期刊全文

计算机断层扫描技术在木材科学中应用研究进展



编号 lyqk005979

中文标题 计算机断层扫描技术在木材科学中应用研究进展

作者 曹正彬  葛浙东  张连滨  刘传泽  周玉成 

作者单位 山东建筑大学信息与电气工程学院,济南 250101,山东建筑大学信息与电气工程学院,济南 250101,山东建筑大学信息与电气工程学院,济南 250101,山东建筑大学信息与电气工程学院,济南 250101,山东建筑大学信息与电气工程学院,济南 250101

期刊名称 世界林业研究 

年份 2017 

卷号 30

期号 5

栏目编号 1

栏目名称 专题论述 

中文摘要 计算机断层扫描(CT)技术作为一种高质、高效的无损检测技术,具有重建图像分辨率高、速度快等优点。鉴于该技术在医学领域取得的重大成就,国内外学者基于CT技术对木材做了大量研究,并将其应用于木材科学研究领域,验证了CT技术在木材检测和木材加工领域的可行性,同时取得了良好的使用效果。文中综述了CT技术在木材缺陷检测、木材宏观构造检测和木材切割中应用的研究进展,分析了现有技术存在的问题,展望了CT技术在木材科学领域的应用前景。

关键词 木材科学  计算机断层扫描技术  无损检测  木材加工 

基金项目 山东省泰山学者优势特色学科人才团队支持计划(2015162);山东建筑大学博士基金“基于X射线的木结构建筑用材无损检测系统研究”(XNBS1622)。

英文标题 Research Advances in Application of Computed Tomography to Wood Fields

作者英文名 Cao Zhengbin, Ge Zhedong, Zhang Lianbin, Liu Chuanze and Zhou Yucheng

单位英文名 School of Information and Electrical Engineering,Shandong Jianzhu University,Jinan 250101,China,School of Information and Electrical Engineering,Shandong Jianzhu University,Jinan 250101,China,School of Information and Electrical Engineering,Shandong Jianzhu University,Jinan 250101,China,School of Information and Electrical Engineering,Shandong Jianzhu University,Jinan 250101,China and School of Information and Electrical Engineering,Shandong Jianzhu University,Jinan 250101,China

英文摘要 The computer tomography (CT) technology is a nondestructive detection technique with high quality and efficiency, boasting the advantages of high resolution for image reconstruction and high analyzing speed. Considering its major achievements in the medical field, researchers all over the world have done numerous studies in wood field using CT technology, which verified the feasibility of the CT technology in the field of wood detection and processing and also obtained a good effect in practice. This paper reviewed the research progress in CT technology application in nondestructive wood defects detection, wood macroscopic structure detection and wood cutting, and presented the existing technical problems in detail. In the end, the paper prospected the development of the CT technology in the field of wood research.

英文关键词 wood field;CT technology;nondestructive detection;wood processing

起始页码 45

截止页码 50

投稿时间 2017/4/12

分类号 S781

DOI 10.13348/j.cnki.sjlyyj.2017.0057.y

参考文献 [1] REINPRECHT L,ŠUPINA P. Comparative evaluation of inspection techniques for impregnated wood utility poles:ultrasonic, drill-resistive, and CT-scanning assessments[J]. European Journal of Wood and Wood Products, 2015,73(6):741-751.
[2] 张富文,许清风,张治宇,等.钻入阻抗法检测木材缺陷[J].无损检测,2016,38(1):6-9.
[3] HARDING G, HARDING E. Compton scatter imaging:a tool for historical exploration[J]. Applied Radiation and Isotopes, 2010, 68(6):993-1005.
[4] 闫镔,李磊.CT图像重建算法[M]. 北京:科学出版社,2014.
[5] KRAHENBUHI A, KERAUTRET B, DEBLED-RENNESSON I, et al. Knot detection in X-ray CT images of wood[C]. International Symposium on Visual Computing, 2013.
[6] LINDGREN O. X-ray absorption coefficients CT-numbers and their relation to wood density:medical cat-scanning[J]. Wood Science & Technology, 2016, 25(5):341-349.
[7] HAGMAN O. Classification of scots pine (Pinus sylvestris) knots in density images from CT scanned logs[J]. HolzalsRoh-und Werkstoff, 1995, 53(2):75-81.
[8] BULCKE J V D, MASSCHAELE B, DIERICK M, et al. Three-dimensional imaging and analysis of infested coated wood with X-ray submicron CT[J]. International Biodeterioration& Biodegradation, 2008, 61(3):278-286.
[9] BHANDARKAR S M, FAUST T D, TANG M. Design and prototype development of a computer vision-based lumber production planning system[J]. Image & Vision Computing, 2002, 20(3):167-189.
[10] 葛浙东,侯晓鹏,周玉成,等.基于反投影坐标快速算法的木材CT检测系统研究[J].农业机械学报,2016,47(3):335-341.
[11] LONGUETUAD F, MOTHE F, KERAUTRET B, et al. Automatic knot detection and measurements from X-ray CT images of wood:a review and validation of an improved algorithm on softwood samples[J]. Computers & Electronics in Agriculture, 2012, 85(5):77-89.
[12] SARIGUAL E, ABBOTT A L, SCHMOLDT D L. Rule-driven defect detection in CT images of hardwood logs[J]. Computers & Electronics in Agriculture, 2003, 41(1):101-119.
[13] LONGUETAUD F, MOTHE F, LEBAN J M. Automatic detection of the heartwood/sapwood boundary within Norway spruce[Picea abies (L.) Karst.] logs by means of CT images[J]. Computers & Electronics in Agriculture, 2007, 58(2):100-111.
[14] 孙天用,王立海.基于应力波与X射线二维CT图像原木内部腐朽无损检测[J].森林工程,2011,27(6):26-29.
[15] 戚大伟,牟洪波.基于Hu不变矩和BP神经网络的木材缺陷检测[J].东南大学学报,2013,43(1):63-66.
[16] LI W, BULCKER J V D, WINDT I D, et al. Relating MOE decrease and mass loss due to fungal decay in plywood and MDF using resonalyser and X-ray CT scanning[J]. International Biodeterioration & Biodegradation,2016, 110:113-120.
[17] LONGUETAUD F, LEBAN J M, MOTHE F. Automatic detection of pith on CT images of spruce logs[J].Computers & Electronics in Agriculture, 2004, 44(2):107-119.
[18] BOUKADIDA H, LONGURTAUD F, COLIN F, et al. Pith extract:a robust algorithm for pith detection in computer tomography images of wood:application to 125 logs from 17 tree species[J]. Computers & Electronics in Agriculture, 2012, 85(5):90-98.
[19] ENTACKER K, HEGENBART S, KERSCHBAUMER J, et al. Pith detection on CT-Cross-Section images of logs:an experimental comparison[C].International Symposium on Communications, Control and Signal Processing, St Julians, Malta, 2008:478-483.
[20] MORISSET J B, MOTHE F, COLIN F. Observation of Quercus petraea epicormics with X-ray CT reveals strong pith-to-bark correlations:silvicultural and ecological implications[J]. Forest Ecology and Management, 2012, 278(6):127-137.
[21] 丁建文,王宝金,徐兆军.基于灰度直方图分析的原木CT图像分割[J].木材加工机械,2006,17(5):1-4.
[22] WEI Q, CHUI Y H, LEBLON B, et al. Identification of log characteristics in computed tomography images using back-propagation neural networks with the resilient back-propagation training algorithm and textural analysis:preliminary results[J]. Wood & Fiber Science Journal of the Society of Wood Science & Technology, 2008, 40(4):620-633.
[23] WEI Q, LEBLON B, CHUI Y H, et al. Identification of selected log characteristics from computed tomography images of sugar maple logs using maximum likelihood classifier and textural analysis[J]. Holzforschung, 2008, 62(4):441-447.
[24] ROJAS G, CONDAL A, BEAUREGARD R, et al. Identification of internal defect of sugar maple logs from CT images using supervised classification methods[J]. European Journal of Wood and Wood Products, 2006, 64(4):295-303.
[25] 戚玉涵,徐佳鹤,张星梅,等.基于扇形束X射线束的立木CT成像系统[J].林业科学,2016,52(7):121-128.
[26] 葛浙东,侯晓鹏,李早芳,等.断层扫描技术在木材无损检测中的应用[J].木材工业,2016,30(3):49-52.
[27] MANCEURAMEUR M, JEAN B, HAN L W, et al. A multidimensional statistical model for wood data analysis, with dens[J]. Canadian Journal of Forest Research, 2012, 42(6):1038-1049.
[28] HAMADA J, PETRISSANS A, MOTHE F, et al. Variations in the natural density of European oak wood affect thermal degradation during thermal modification[J]. Annals of Forest Science, 2016, 73(2):277-286.
[29] HANSSON L, CHEREPANOVA E. Determination of wood moisture properties using a CT-scanner in a controlled high-temperature environment.[J]. Wood Material Science & Engineering, 2012, 7(2):87-92.
[30] De MIL T, VANNOPPEN A, BEECKMAN H, et al. A field-to-desktop tool chain for X-ray CT densitometry enables tree ring analysis[J]. Annals of Botany, 2016, 127(7):50-55.
[31] CHULKI K, JUNGKWON O, HONG J P, et al. Density calculation of wood by portable X-ray tube with consideration of penetrating depth[J]. Journal of Wood Science, 2014, 60(2):105-110.
[32] JOHAN S, J???乎?問????????副?啤吠剤?呡???????????割?乭乥?却即传乩????放瑐?慮汵???湹潬瑶?獳整杲浩敳渼琯慩琾椠潳湡?椠湬?????呯?楢浩慮杩敮獧?潘昭?睡敹琠?睮潤漠摴?孲?嵥??偩慭瑥瑮敳物湯?剡敬挠潳杣湡楮瑮楩潮湧????ㄠ???????????????????? of Forest Research, 2009, 25(2):470-481.
[33] HE X, QI D. Density and moisture content forecasting based on X-ray computed tomography[J]. European Journal of Wood and Wood Products, 2013, 71(5):647-652.
[34] HANSSON L, FJELLNER B A. Wood shrinkage coefficient and dry weight moisture content estimations from CT-images[J]. Pro Ligno, 2013, 9(4):557-561.
[35] LINDGREN O, SEIFERT T, PLESSIS A D. Moisture content measurements in wood using dual-energy CT scanning:a feasibility study[J]. Wood Material Science & Engineering, 2016, 11(5):312-317.
[36] LONGUETUAD F, MOTHE F, FOURNIER M, et al. Within-stem maps of wood density and water content for characterization of species:a case study on three hardwood and two softwood species[J]. Annals of Forest Science, 2016, 73(3):1-14.
[37] OSBORNE N L,HØIBØ φA, MAGUIRE D A. Estimating the density of coast Douglas-fir wood samples at different moisture contents using medical X-ray computed tomography[J]. Computers & Electronics in Agriculture, 2016, 127:50-55.
[38] TANAHA T. Improved method based on dual-energy X-ray absorptiometry for nondestructive evaluation of solid wood moisture content[J]. Holzforschung, 2015, 69(9):1133-1136.
[39] AN Y, SCHAJER G S. Feature-specific CT measurements for log scanning:theory and application[J]. Experimental Mechanics, 2014, 54(5):753-762.
[40] 王厚立,徐兆军,丁建文,等.基于CT扫描的计算机模拟薄木刨切[J].木材工业,2004,18(6):9-12.
[41] 张训华,业宁,丁建文,等.原木CT图像3D重建及其虚拟加工技术研究[J].南京林业大学学报(自然科学版),2010,34(2):77-80.
[42] 葛浙东. 木材X射线断层扫描图像重建算法构建与系统研发[D]. 北京:中国林业科学研究院,2016.
[43] SHARMA Y, PHILLION A B, MARTINEZ D M. Automated segmentation of wood fibres in micro-CT images of paper[J]. Journal of Microscopy, 2015, 260(3):400.
[44] FREDRIKSSON M. Handling positioning errors when optimizing sawing of Scots pine and Norway spruce logs using CT scanning[J]. Journal of Wood Science,2016, 62(5):400-406.
[45] KR

PDF全文 浏览全文

相关图谱

扫描二维码