数据资源: 科信所期刊全文

促进绿色未来的全球木材科学与技术研究进展——国际林联第25届世界大会木材议题综述



编号 lyqk008613

中文标题 促进绿色未来的全球木材科学与技术研究进展——国际林联第25届世界大会木材议题综述

作者 焦立超  王霄  殷亚方 

作者单位 中国林业科学研究院木材工业研究所, 北京 100091

期刊名称 世界林业研究 

年份 2020 

卷号 33

期号 6

栏目编号 1

栏目名称 专题论述 

中文摘要 国际林业研究组织联盟(IUFRO)第25届世界大会于2019年在巴西召开。文中从木材生长、木材性质与质量、木材识别、木材加工利用和木文化5个方面分别论述了这次大会在木材科学与技术领域的国际最新研究热点与进展,以反映全球木材科学的研究现状,并梳理学科发展方向。木材形成、木材质量、木材高附加值利用、木材识别新技术等议题依然是木材科学与技术领域的未来研究热点。

关键词 木材科学  木材形成  木材质量  木材识别  高附加值利用  木文化 

基金项目 国家重点研发计划“木材细胞壁结构调控对性能的影响机制”(2017YFD0600202);中央级公益性科研院所基本科研业务费专项资金“中青年专家走出去计划”(CAFYBB2017ZF006)。

英文标题 Global Research Advances in Wood Science and Technology for A Green Future: A Review of Wood Topics in XXV IUFRO World Congress

作者英文名 Jiao Lichao, Wang Xiao, Yin Yafang

单位英文名 Research Institute of Wood Industry, Chinese Academy of Forestry, Beijing 100091, China

英文摘要 The XXV International Union of Forestry Research Organization (IUFRO) World Congress was held in Brazil in September-October, 2019. The paper reviewed the latest research hotspots and advances in the area of wood science and technology from the aspects of wood formation, wood property and quality, wood identification, wood processing and utilization and wood culture to reflect the research status of international wood science, and identified the future development orientation of this discipline, including wood formation, wood properties, high value-added utilization of wood and new technology of wood identification.

英文关键词 wood science;wood formation;wood quality;wood identification;high value-added utilization;wood culture

起始页码 1

截止页码 8

投稿时间 2020/2/22

最后修改时间 2020/3/23

作者简介 焦立超,男,助理研究员,博士,主要从事木材构造与利用研究,E-mail:jiaolc@caf.ac.cn。

通讯作者介绍 殷亚方,研究员,博士,主要从事木材构造与利用研究,E-mail:yafang@caf.ac.cn。

E-mail 殷亚方,研究员,博士,主要从事木材构造与利用研究,E-mail:yafang@caf.ac.cn。

分类号 S781

DOI 10.13348/j.cnki.sjlyyj.2020.0051.y

参考文献 [1] PLOMION C, LEPROVOST G, STOKES A. Wood formation in trees[J].Plant Physiology, 2001, 127:1513-1523.
[2] CHAMBI-LEGOAS R, TOMAZELLO-FILHO M, GORRETTA N, et al. Spatial variation of wood density for Eucalyptus grandis by near infrared hyperspectral imaging combined with X-ray analysis[J].Brazilian Journal of Forestry Research, 2019, 39:175-176.
[3] RODRIGUEZ D R O, SANTINI L, CARVALHO H, et al. A novel approach to understanding the formation of tree rings in tropical species by analyzing traces of elements[J].Brazilian Journal of Forestry Research, 2019, 39:176.
[4] STRIAMETS S, STRYAMETS N. Photometric method for tree rings determination[J].Brazilian Journal of Forestry Research, 2019, 39:236.
[5] KAGAWA A. Recent advances in isotope dendroclimatology at Forestry and Forest Products Research Institute/FFPRI, Tsukuba, Japan[J].Brazilian Journal of Forestry Research, 2019, 39:237.
[6] 岳小泉, 王立海, 王兴龙, 等. 电阻断层成像、应力波及阻抗仪3种无损检测方法对活立木腐朽程度的定量检测[J].林业科学, 2017, 53(3):138-146.
[7] WESSELS B, PRINS A. Predicting sawn wood quality of standing Eucalyptus trees from non-destructive measurements[J].Brazilian Journal of Forestry Research, 2019, 39:412.
[8] WU T, FANG G. Study on rapid measurement method for pulpwood characteristics using the near-infrared techniques[J].Brazilian Journal of Forestry Research, 2019, 39:411.
[9] DIVAKARA B N, NIKHITHA C U, SETHY A K. Exploring the possibilities of quantifying Heartwood of Tectona grandis Linn. f. using electrical resistivity tomography (ERT) for tree improvement[J].Brazilian Journal of Forestry Research, 2019, 39:413.
[10] KIM H, YANG S, PARK Y, et al. Surface knots classification of wood using k-Nearest neighbor and deep learning[J].Brazilian Journal of Forestry Research, 2019, 39:414.
[11] CASAGRANDE N B, BRAND M A, CUNHA A B, et al. Use of a non-destructive technique to estimate the wood basic density in standing trees[J].Brazilian Journal of Forestry Research, 2019, 39:425.
[12] BALASSO M, HUNT M, NOLAN G, et al. Use of non-destructive techniques to optimise the production of structural products from Eucalyptus plantations grown for fibre[J].Brazilian Journal of Forestry Research, 2019, 39:411.
[13] BERTOLDO C, SOMO R, PEREIRA V, et al. Physical, mechanical, and acoustical characterization to Leucaena leucocephala wood[J].Brazilian Journal of Forestry Research, 2019, 39:412.
[14] SILINSKAS B, ALEINIKOVAS M, SKEMA M. Static and dynamic MOE of spruce and pine wood grown in the plantations of different initial stand density[J].Brazilian Journal of Forestry Research, 2019, 39:425.
[15] YANUARIADI T. Enhancing conservation and sustainable management of teak forests and the legality of wood supply in the Greater Mekong sub-region[J].Brazilian Journal of Forestry Research, 2019, 39:316.
[16] NÖLTE A, MEILBY H, YOUSEFPOUR R. Improving structural diversity of teak monocultures and economic implications[J].Brazilian Journal of Forestry Research, 2019, 39:317.
[17] SREELAKSHMY M P, THULASIDAS P K. TEAKNET towards the development of teak sector[J].Brazilian Journal of Forestry Research, 2019, 39:318.
[18] COELHO M, ALMEIDA C, JÚNIOR F S, et al. Technological characterization of Tectona grandis sawing wood waste and considerations of its potential uses[J].Brazilian Journal of Forestry Research, 2019, 39:317-318.
[19] ZHOU Z, WANG X, YANG G, et al. Strategies and practices to manage teak plantations in south China[J].Brazilian Journal of Forestry Research, 2019, 39:318.
[20] MA J, LIU X, FENG L. Visualizing the microfibrils orientation distribution in moso bamboo by polarized laser Raman spectroscopy[J].Brazilian Journal of Forestry Research, 2019, 39:414.
[21] FANG C. A simultaneous treatment of bamboo flattening and homog-enization[J].Brazilian Journal of Forestry Research, 2019, 39:416.
[22] 李玉敏, 冯鹏飞. 基于第九次全国森林资源清查的中国竹资源分析[J].世界竹藤通讯, 2019, 17(6):45-48.
[23] 费本华. 建立国家竹材仓储机制[J].世界竹藤通讯, 2019, 17(6):1-4.
[24] 何拓. 基于机器学习的黄檀属与紫檀属木材识别方法研究[D].北京:中国林业科学研究院, 2019.
[25] DAMAYANTI R, SUGIYANTO K, DEWI L M, et al. Xylarium bogoriense and development of wood identification system in Indonesia[J].Brazilian Journal of Forestry Research, 2019, 39:346.
[26] LISI C S, SANTANA C S F, MENEZES N A, et al. M Timbers:Software to assist wood identification of tropical species (android version)[J].Brazilian Journal of Forestry Research, 2019, 39:346.
[27] PAREDES-VILLANUEVA K. Tropical timber forensics:a multi-methods approach to tracing Bolivian Cedrela[J].Brazilian Journal of Forestry Research, 2019, 39:345.
[28] JIAO L, LU Y, HE T, et al. A strategy for developing high-resolution DNA barcodes for species discrimination of wood specimens using the complete chloroplast genome of three Pterocarpus species[J].Planta, 2019, 250:95-104.
[29] LANCASTER C, ESPINOZA E. Wood identification by direct analysis in real time time-of-flight mass spectrometry[J].Brazilian Journal of Forestry Research, 2019, 39:345.
[30] SILVA D C, PASTORE T C M, SOARES L F, et al. Determination of the origin of Swietenia macrophylla wood from five Latin American countries and discrimination between S. macrophylla and S. humilis using portable NIR devices and multivariate analysis[J].Brazilian Journal of Forestry Research, 2019, 39:346.
[31] ZHANG M, ZHAO G, LIU B, et al. Wood discrimination analyses of Pterocarpus tinctorius and endangered Pterocarpus santalinus using DART-FTICR-MS coupled with multivariate statistics[J].IAWA Journal, 2019, 40:58-74.
[32] UGULINO B, HERNÁNDEZ R, LIMA J T. Dust emission during helical planing sucupira wood[J].Brazilian Journal of Forestry Research, 2019, 39:471.
[33] ALEINIKOVAS M, ŽEMAITIS P, LINKEVIČIUS E. Comparative assessment of the sustainability performance of glue laminated timber and non-renewable material-based value chains[J].Brazilian Journal of Forestry Research, 2019, 39:472.
[34] ÖZPARPUCU M, WINDEISEN E, RICHTER K. Combined FTIR spectroscopy and rheology for measuring adhesive curing as influenced by wood extracts[J].Brazilian Journal of Forestry Research, 2019, 39:472.
[35] KILPELÄINEN P, LAHTINEN M, LIIMATAINEN J, et al. Role of wood extractives in emulsion stabilization capacity of hemicelluloses[J].Brazilian Journal of Forestry Research, 2019, 39:417.
[36] CHIARELLO L M, RAMOS C E A, ZACCARON S, et al. Production of cellulosic ethanol from steam-exploded Eucalyptus urograndis wood chips[J].Brazilian Journal of Forestry Research, 2019, 39:423.
[37] ISSAOUI H, MARTÍNEZ P L H, LABIDI J, et al. Free formaldehyde phenolic resins for a potential use in adhesives formulation, wood coating and porous materials production[J].Brazilian Journal of Forestry Research, 2019, 39:418.
[38] ANGURUWA G T, OLUWADARE A O, AKINYELE A. Physico-chemical properties of bio-oil produced from Ficus exasperata Sawdust using Vacuum Reactor[J].Brazilian Journal of Forestry Research, 2019, 39:424.
[39] HENGNIRAN P, BADAN P, PHEWFAI D. A pilot scale of torrefied wood pellet production for serving small community enterprise and supply chain of bioenergy production[J].Brazilian Journal of Forestry Research, 2019, 39:424.
[40] 赵广杰, 张求慧.木质生物质的液化及其产物的高效利用研究进展[J].生物质化学工程, 2008, 42(06):29-36.
[41] TEIXEIRA D E, PEREIRA D C, NAKAMURA A P D, et al. Adhesivity of biobased anhydrous citric acid, tannin-citric acidand ricinoleic acid in the manufacture and properties offormaldehyde free particleboard[J].Brazilian Journal of Forestry Research, 2019, 39:420.
[42] JANISZEWSKA D, HOCHMAŃSKA P, BAŁÈCZNY W. Nanobioad-hesives for use in wood-based composites bonding[J].Brazilian Journal of Forestry Research, 2019, 39:420.
[43] HORN H, DIBDIAKOVA J, LINDSTRÖM N. X-ray determination of moisture content in wood biofuel assortments for bioenergy plant process control[J].Brazilian Journal of Forestry Research, 2019, 39:330.
[44] WANG X, ZHOU Y. Clear image acquisition:moving board tracking for surface defects identification[J].Brazilian Journal of Forestry Research, 2019, 39:330.
[45] BOTTER-KUISCH H, BULCKE J V, BAETENS J, et al. Experimental methodology to monitor the development of wood drying cracks in real-time[J].Brazilian Journal of Forestry Research, 2019, 39:471-472.
[46] ROSSMANN J, SCHLUSE M, GERRITZEN T, et al. Industry 4.0 concepts for the wood industry's digital transformation:three steps to forestry 4.0[J].Brazilian Journal of Forestry Research, 2019, 39:331.
[47] MURALIDHARAN E M, THULASIDAS P K. A unique mechanical process for extraction of natural fibre from bamboo derived from a traditional practice in Kerala State, India[J].Brazilian Journal of Forestry Research, 2019, 39:415.
[48] TEIXEIRA D E, ALMEIDA J G, MELO J E, et al. Development of a flex material combining glued laminated bamboo and wood:application in a prototype of a bus stop for public use in Brasilia, Brazil[J].Brazilian Journal of Forestry Research, 2019, 39:415.
[49] LIU K, LAVERDE M C, SHAO C, et al. A contemporary interpretation of the traditional construction material Bamboo-INBAR Garden-Pavilion in 2019 Beijing Horticultural Expo[J].Brazilian Journal of Forestry Research, 2019, 39:415.
[50] 田黎敏, 靳贝贝, 郝际平. 现代竹结构的研究与工程应用[J].工程力学, 2019, 36(5):1-18.
[51] GUPTA S. Immortal wood traditions in India and there contemporary relevance[J].Brazilian Journal of Forestry Research, 2019, 39:693.
[52] WOITSCH J. Schwarzenberg floating canal:an unwanted forest cultural heritage?[J].Brazilian Journal of Forestry Research, 2019, 39:693.
[53] CHAMBERLAIN J, BAUMFLEK M, LAKE F. The cultural importance of nontimber forest products in the United States[J].Brazilian Journal of Forestry Research, 2019, 39:28.
[54] YANG P. Acoustics features of ten kinds of small ethnic wood musical instruments[J].Brazilian Journal of Forestry Research, 2019, 39:29.
[55] 罗建举. 木与人类文明[J].科技导报, 2016, 34(19):14-21.

PDF全文 浏览全文

相关图谱

扫描二维码