编号
lyqk004806
中文标题
基于计算机断层扫描技术的木材节子检测算法研究
作者单位
国际竹藤中心生物质材料研究中心,竹藤科学与技术重点实验室,北京 100102;东北林业大学材料科学与工程学院,哈尔滨 150040;国际竹藤中心生物质材料研究中心,竹藤科学与技术重点实验室,北京 100102;国际竹藤中心生物质材料研究中心,竹藤科学与技术重点实验室,北京 100102;东北林业大学材料科学与工程学院,哈尔滨 150040;国际竹藤中心生物质材料研究中心,竹藤科学与技术重点实验室,北京 100102;国际竹藤中心生物质材料研究中心,竹藤科学与技术重点实验室,北京 100102;国际竹藤中心生物质材料研究中心,竹藤科学与技术重点实验室,北京 100102
期刊名称
世界林业研究
年份
2015
卷号
28
期号
5
栏目编号
1
栏目名称
专题论述
中文摘要
介绍了目前国内外通过计算机断层扫描技术(CT)结合各种算法对木材中节子部分进行无损检测所取得的研究进展,概述了以灰度阈值法、滤波算法、最大似然法和神经网络法为主的算法识别特点,并对其中应用广泛的神经网络算法进行了对比分析。现有研究表明,运用该技术结合多种算法可实现对原木中节子参数特征的提取与分析,通过算法的不断改进能够提高节子检测的准确率。文中还总结了CT技术在处理节子检测方面存在的主要问题,并对未来趋势进行了展望。
基金项目
国际竹藤中心基本科研业务费专项(1632010002);国家林业公益性行业科研专项(201304513)
英文标题
Computed Tomography(CT) Technology Application in Knot Algorithm Study
作者英文名
Zhao Deda,Yang Shumin,Liu Xing'e,Yu Shen,Tian Genlin,Ma Jianfeng and Wang Qingping
单位英文名
International Center for Bamboo and Rattan,Key Laboralory of Bamboo and Rattan Science and Technology,Beijing 100102,China;Materials Science and Engineering College,Northeast Forestry University,Harbin 150040,China;International Center for Bamboo and Rattan,Key Laboralory of Bamboo and Rattan Science and Technology,Beijing 100102,China;International Center for Bamboo and Rattan,Key Laboralory of Bamboo and Rattan Science and Technology,Beijing 100102,China;Materials Science and Engineering College,Northeast Forestry University,Harbin 150040,China;International Center for Bamboo and Rattan,Key Laboralory of Bamboo and Rattan Science and Technology,Beijing 100102,China;International Center for Bamboo and Rattan,Key Laboralory of Bamboo and Rattan Science and Technology,Beijing 100102,China;International Center for Bamboo and Rattan,Key Laboralory of Bamboo and Rattan Science and Technology,Beijing 100102,China
英文摘要
The paper introduced the domestic and international research progress on non-destructive testing of wood knot by computed tomography technology combined with various algorithms, described algorithm's identifying characteristics in gray threshold method, filtering algorithm, maximum likelihood method and neural network algorithm, and comparatively analyzed the wide application of neural network algorithm. Existing research shows that the use of CT technique combined with a variety of algorithm can achieve extraction and analysis of knot parameters features, and the accuracy in knot test could be improved through the continuous improvement of the algorithm. Finally, the main problems existing in knot testing with CT technology were summarized and the future tendency was also discussed.
英文关键词
knot;computed tomography technology;non-destructive testing;algorithm research
起始页码
50
截止页码
55
投稿时间
2015/1/12
分类号
S781.51
DOI
10.13348/j.cnki.sjlyyj.2015.05.005
参考文献
[1] 赵庚寅. X射线扫描对原木内部缺陷测定的研究[D]. 哈尔滨:东北林业大学,2003.
[2] 王光林,范玉玲,邵新建.浅析木材检验中节子缺陷对材质的影响[J]. 科技创新,2013(8):35-36.
[3] Bodig J, Jayne B A. Mechanics of wood and wood composites[M]. Toronto, Canada:Van Nostrand Reinhold Co, 1982:712.
[4] Benson-Cooper D M, Knowles R L. Computed tomographic scanning for the detection of defects within logs[R]. Rotorua:New Zealand Forest Research Institute,1982.
[5] 王莉娟.无损检测方法评估人工林场木材性质的研究[D]. 北京:北京林业大学,2005.
[6] Taylor F M, Wagner F G J, McMillin C W, et al. Locating knots by industrial tomography-a feasibility study[J]. Forest Products Journal,1984,34(5):42-46.
[7] Funt B V, Bryant E C. Detection of internal log defects by automatic interpretation of computer tomography images[J]. Forest Products Journal, 1987,37(1):56-62.
[8] Wells P, Som S, Davis J. Automated feature extraction from tomographic images of wood[C]//Proceedings of Digital Image Computing:Techniques and Applications(DICTA),Melbourne,Australia,1991.
[9] Mengjin Tang. Use of computed tomography to detect internal defects in hardwood logs with applications in sawmilling[D]. Georgia:the University of Georgia,1998.
[10] 葛婷.几种数字图像滤波算法[D]. 南京:南京信息工程大学,2006.
[11] Zhu D P, Conners R W, Araman P A. 3-D signal processing in a computer vision system[C]. International Conference on Systems Engineering,Fairborn,Ohio,USA,1991.
[12] Zhu D P, Conners R W, Araman P A. CT image sequence processing for wood defect recognition[C]. The Twenty-third Southeastern Symposium on System Theory,Columbia,South Carolina,1991.
[13] Grundberg S, Gronlund A. Log scanning-extraction of knot geometry[C]. The First International Seminar/Workshop on Scanning Technology and Image Processing on Wood, Skelleftea, Sweden, 1992.
[14] Oja J. A comparison between three different methods of measuring knot parameters in Picea abies[J]. Scandinavian Journal of Forest Research,1997,12(3):311-315.
[15] Bhandarkar S M, Luo X Z, Daniels R, et al. A novel feature-based tracking approach to the detection,localization,and 3-D reconstruction of internal defects in hardwood logs using computer tomography[J]. Pattern Analysis and Applications,2006,9(2/3):155-175.
[16] Wei Q, Leblon B, Rocque A L. On the use of X-ray computed tomography for determining wood properties:a review1[J]. Canadian Journal of Forest Research, 2011,41(11):2120-2140.
[17] Longuetaud F, Saint-André L, Leban J M. Automatic detection of annual growth units on Picea abies logs using optical and X-ray techniques[J]. Journal of Nondestructive Evaluation,2005,24(1):29-43.
[18] Rojas G E, Condal A, Beauregard R, et al. Identification of internal defect of sugar maple logs from CT images using supervised classification methods[J]. Holz als Roh-und Werkstoff,2006,64:295-303. doi 10.1007/s00107-006-0105-0.
[19] Schmoldt D L, Li P, Abbott A L. Log defect recognition using CT-images and neural net classifiers[C]//Proceedings of 2nd International Workshop/Seminar on Scanning Technology and Image Processing on Wood, Skellefteå,Sweden, 1995:77-87.
[20] Schmoldt D L, He J, Abbott A L. Automated labelling of log features in CT imagery of multiple hardwood species[J]. Wood Fiber Science,2000,32(3):287-300.
[21] Nordmark U. Knot identification from CT images of young Pinus sylvestris sawlogs using artificial neural networks[J]. Scandinavian Journal of Forest Research,2002,17(1):72-78.
[22] Nordmark U. Models of knot and log geometry of young Pinus sylvestris saw logs extracted from computed tomographic images[J]. Scandinavian Journal of Forest Research,2003,18(2):168-175.
[23] Sarigul E, Abbott A L, Daniel L S.Rule-driven defect detection in CT images of hardwood logs[J]. Computers and Electronics in Agriculture,2003,41(1/2/3):101-119.
[24] 牟洪波,戚大伟.基于人工神经网络的木材缺陷检测[C]. 第八届中国林业青年学术年会,哈尔滨,2008:1241-1244.
[25] Hagman P O G, Grundberg S A. Classification of Scots pine(Pinus sylvestris) knots in density images from CT scanned logs[J]. Holz als Roh-und Werkstoff,1995,53(2):75-81.
[26] Wei Q, Chui Y H, Leblon B, et al. Identification of log characteristics in computed tomography images using back-propagation neural networks with the resilient back-propagation training algorithm and textural analysis:preliminary results[J]. Wood and Fiber Science, 2008,40(4):620-633.
[27] Wei Q, Leblon B, Chui Y H, et al. Idenentification of selected log characteristics from computed tomography images of sugar maple logs using maximum likelihood classifier and textural analysis[J]. Holzforschung,2008,62(4):441-447.
[28] Wei Q, Chui Y H, Leblon B, et al Identification of selected internal wood characteristics in computed tomography images of black spruce:a comparison study[J]. Journal of Wood Science,2009,55(3):175-180.
[29] Moberg L.Models of internal knot properties for Picea abies[J]. Forest Ecology and Management,2001,147(2/3):123-138.
[30] Aguilera C, Sanchez R, Baradit E. Detection of knots using X-ray tomographies and deformable contours with simulated annealing[J]. Wood Research,2008,53(2):57-66.
[31] Aguilera C, Sanchez R, Baradit E. Internal wood inspection with active contour using data from CT scanning[J]. Wood Research,2008,53(4):13-22.
[32] Longuetaud F, Mothe F, Kerautret B, et al. Automatic knot detection and measurements from X-ray CT images of wood:a review and validation of an improved algorithm on softwood samples[J]. Computers and Electronics in Agriculture,2012,85:77-89.
[33] Breinig L, Brüchert F, Baumgartner R, et al. Measurement of knot width in CT images of Norway spruce[Picea abies(L.) Karst.]-evaluating theaccuracy of an image analysis method[J]. Computers and Electronics in Agriculture,2012,85:149-156.
[34] Johansson E, Johansson D, Skog J,et al. Automated knot detection for high speed computed tomography on Pinus sylvestris L. and Picea abies(L.) Karst.using ellipse fitting in concentric surfaces[J]. Computers and Electronics in Agriculture,2013,96:238-245.
[35] Roussel J R, Mothe F,Krähenbühl A, et al. Automatic knot segmentation in CT images of wet softwood logs using a tangential approach[J]. Computers and Electronics in Agriculture,2014,104:46-56.
PDF全文
浏览全文