数据资源: 中文期刊论文

基于Geosail模型和SVR算法的叶面积指数遥感反演



编号 zgly0001655775

文献类型 期刊论文

文献题名 基于Geosail模型和SVR算法的叶面积指数遥感反演

作者 杨维  张学霞  赵静瑶 

作者单位 北京林业大学水土保持学院 

母体文献 中国水土保持科学 

年卷期 2018年06期

年份 2018 

分类号 S771.8 

关键词 SVR算法  Geosail模型  叶面积指数  Landsat8OLI  阔叶林 

文摘内容 叶面积指数(LAI)控制着植物冠层的多种生理和生态过程,是陆地生态、水文模型中不可或缺的植被参数,因此准确反演区域LAI对研究植被与土壤侵蚀具有重要意义。本文以北京地区阔叶林为研究对象,利用Geosail模型模拟LAI和7种植被指数:比值植被指数(RVI)、归一化植被指数(NDVI)、绿波段植被指数(GNDVI)、重归一化植被指数(RDVI)、土壤调整植被指数(SAVI)、调整土壤亮度植被指数(OSAVI)和修正的土壤调整植被指数(MSAVI),并采用支持向量机回归(SVR)算法和4种统计回归方法(线性函数、二次函数、指数函数和对数函数)建立LAI反演模型,同时通过Landsat 8 OLI遥感数据和实测数据验证模型精度。研究表明:1) SVR算法相比其他统计回归方法可以提高LAI反演的模型精度和预测精度; 2) OSAVI指数在LAI反演方面的表现要优于NDVI等指数;3) NDVI指数的建模精度很高,但预测精度较低; 4) OSAVI和SVR算法构建的模型精度和稳定性更好,是LAI反演的优选模型,其预测结果最为精确。因此,基于Geosail模型和SVR算法的反演方法可提高LAI反演精度,为大区域LAI反演的应用提供了新的思路,扩展了Geosail模型、SVR算法和Landsat 8 OLI遥感数据在LAI反演方面的应用潜力。

相关图谱

扫描二维码