编号 zgly0001706705
文献类型 期刊论文
文献题名 影像的土地覆被快速分类
作者单位 山西师范大学地理科学学院
母体文献 遥感技术与应用
年卷期 2020年02期
年份 2020
分类号 TP79 F301
关键词 土地覆被分类 云计算 随机森林法 GoogleEarthEngine Landsat时间序列
文摘内容 精确的土地覆盖信息是进行碳循环、气候变化监测、土壤退化等相关科学研究的基础。随着云计算技术的不断成熟,一些高效算法与平台被不断提出,用来充分挖掘遥感数据所包含的海量信息。基于Google Earth Engine(GEE)云平台,利用随机森林监督分类法对1990、2000、2010、2017年的山西省土地覆被进行了分类。参考Google Earth高清影像选择的1 580个样本点,对分类结果进行了验证;同时将分类结果与CNLUCC、GlobeLand30、FROM-GLC等现有土地覆被分类产品进行比较。验证和对比发现时间序列分类结果的总体精度达到86%~94%,比同期单时相分类总体精度提高了5%~10%;本文时间序列结果达到了CNLUCC、GlobeLand30、FROM-GLC等产品的分类精度。结果表明:①在快速准确土地覆被分类方面,时间序列影像与云平台结合,显示出时效性强、时间周期短、成本低等优势;②时间序列百分位数指标能有效地区分不同土地覆被类型的物候差别,在进行土地覆被分类方面显示出简单、易用、高效等特点。该方法对于深入研究大区域尺度的土地覆被变化过程具有重要的参考价值。