数据资源: 中文期刊论文

基于最小二乘支持向量机和高分辨率遥感影像的大尺度区域岩性划分



编号 zgly0000797342

文献类型 期刊论文

文献题名 基于最小二乘支持向量机和高分辨率遥感影像的大尺度区域岩性划分

学科分类 220.2530;林业遥感

作者 杨佳佳  姜琦刚  陈永良  崔瀚文  张汉女 

作者单位 吉林大学地球探测科学与技术学院  沈阳地质调查中心 

母体文献 中国石油大学学报: 自然科学版 

年卷期 2012,36(1)

页码 60-67

年份 2012 

分类号 P627 TP79 

关键词 岩性识别  大尺度区域分割  最小二乘支持向量机  高分辨率  遥感 

文摘内容 基于大尺度区域分割的理念,提取高分辨率遥感图像中与岩性相关的纹理、形状、光谱信息,利用最小二乘支持向量机(LS-SVM)在非线性预测中的优势,对研究区地质岩性进行识别。首先对高分辨率图像中与岩性相关的光谱、纹理、形状、高程等特征信息进行样本选取,选取过程中以图像的纹理为主要特征信息,同时以J-M距离、转换分类度为依据选取最优特征空间,采用因子分析变换降维对特征空间进行压缩,实现特征信息最优化;然后对已知样本进行训练,建立分类模型,评价模型精度;最后利用模型对研究区进行岩性划分,并进行分类后处理。研究结果表明: 基于LS-SVM的分类方法在利用高分辨率遥感图像岩性识别中表现良好,为地质岩性分类提供了一种新的方法和手段;加入纹理等信息后的LS-SVM分类模型更加利于岩性的判别。

相关图谱

扫描二维码