数据资源: 中文期刊论文

基于无人机影像的高郁闭度杉木纯林树冠参数提取



编号 zgly0001715978

文献类型 期刊论文

文献题名 基于无人机影像的高郁闭度杉木纯林树冠参数提取

作者 孙钊  潘磊  孙玉军 

作者单位 北京林业大学森林资源和环境管理国家林业和草原局重点实验室 

母体文献 北京林业大学学报 

年卷期 2020年10期

年份 2020 

分类号 S718.5  S771.8 

关键词 无人机影像  面向对象分类  树冠参数提取  杉木 

文摘内容 【目的】冠幅是树冠结构的重要特征因子,直接影响树木的生产力和生命力,郁闭度是反映森林冠层结构与密度以及评价森林经营管理采伐强度的重要指标之一。利用无人机可以云下飞行,易于获取图像,精度高,低成本等优势,研究无人机影像上提取树冠参数的方法,使无人机影像提取林木树冠参数的操作系统化,实现精准高效的森林资源清查和监测。【方法】以福建将乐林场杉木人工纯林为研究对象,采用四旋翼无人机影像为数据源,基于面向对象分类的方法,将杉木纯林的树冠参数从无人机影像中提取出来。面向对象分类的方法需要先利用ESP工具选取最优分割尺度,然后根据影像的分割结果将树冠对象聚为一类,进而统计每个树冠对象栅格像素个数计算出树冠冠幅面积以及林分郁闭度。【结果】面向对象分类有效地对高郁闭度林分进行了树冠的提取。在分割尺度为70时,单木树冠分割效果最好,树冠被单独分割出来,但也存在一定的过分割以及未分割的问题,以至于部分单木的丢失。分割结束后,对分割对象进行特征空间的优化,选取适当的分类特征,最终将研究区分为树冠和林隙两类。通过统计每个对象栅格点数,计算得出的林分因子包括林分郁闭度,树冠面积。以地面实测数据作为参考,冠幅面积提取精度为0.829 1,林分郁闭度测量精度为0.973 1。【结论】研究结果表明,基于无人机高分辨率影像的树冠参数提取在高郁闭度林分同样适用,能有效提高森林资源调查的效率并且能够满足森林资源调查的精度。

相关图谱

扫描二维码