编号
zgly0001743347
文献类型
期刊论文
文献题名
基于改进SSD的无人机影像松材线虫病变色木检测
作者单位
河南理工大学测绘与国土信息工程学院
广东省岭南综合勘察设计院
母体文献
林业资源管理
年卷期
2022,(3)
页码
135-141
年份
2022
分类号
S763
S771.8
关键词
松材线虫病
特征融合
通道注意力模块
改进SSD
文摘内容
快速精确获取松材线虫病变色木的株数和位置信息,结合相应的治理措施是防止松材线虫病进一步蔓延的有效手段。通过无人机获取松材线虫病变色木林区的厘米级影像,采用SSD,YOLO v4和Faster R-CNN三种深度学习算法实现对变色木的自动检测。结果表明:相比YOLO v4和Faster R-CNN,SSD对于变色木的总体精度更高为75.0%;提出一种结合特征融合模块和通道注意力机制模块的方法改进SSD,改进SSD的总体检测精度为79.0%,相比SSD总体检测精度提升4.0%,表明改进SSD比SSD更适合变色木检测。验证区的变色木株数为87株,改进SSD正确检测株数为81株,检测的正确率高达93.1%,实现对林区无人机影像中松材线虫病变色木的精准检测,可为松材线虫病变色木的防治工作提供技术支持。