编号 zgly0001728714
文献类型 期刊论文
文献题名 基于广义加性模型的樟子松树干削度方程研建
作者单位 东北林业大学林学院
母体文献 北京林业大学学报
年卷期 2020,42(12)
页码 1-8
年份 2020
分类号 S758
关键词 广义加性模型 样条函数 樟子松 削度方程
文摘内容 【目的】基于广义加性模型理论,构建樟子松的广义加性树干削度方程,并和林业上精度较高的变指数削度方程曾伟生等(1997)、Bi(2000)以及Kozak(2004)进行预测精度比较。【方法】以大兴安岭樟子松为研究对象,使用胸径、树高和不同部位高度及该部位树干直径及其变形构建广义加性削度方程,利用R软件mgcv软件包gamm函数对广义加性模型进行拟合,拟合过程中采用6种样条函数:B样条函数(BS)、三次回归样条函数(CR)、Duchon样条函数(DS)、高斯过程平滑样条函数(GP)、P样条函数(PS)和薄板回归样条函数(TP)。使用留一交叉检验法对模型进行检验。【结果】(1)将相对直径作为因变量,将胸径的平方、相对树高的算术平方根和树高作为自变量构建了最优的广义加性削度方程结构。(2)拟合结果表明,除CR外,其他光滑样条函数表现了相似的拟合结果,且均优于变指数削度方程的统计指标。(3)交叉检验结果表明,除CR光滑样条函数外,广义加性模型(BS,DS,GP,PS,TP)总体与拟合结果基本一致,即预测精度都优于曾伟生等(1997)、Bi(2000)和Kozak(2004)模型,其中广义加性模型中BS模型的预测精度最高,变指数削度方程中Kozak(2004)预测精度最高。(4)通过对比BS和Kozak(2004)模型的干曲线模拟发现,Kozak(2004)在预测小树树干上部时误差较大,而BS在模拟小树和大树上都具有较高的精度。【结论】广义加性模型是构建削度方程的一种非参数方法,基于BS样条函数的广义加性削度方程预测精度最高,适合大兴安岭地区樟子松的干形预测。