编号 zgly0001734891
文献类型 期刊论文
文献题名 基于迁移学习的竹片缺陷识别
作者单位 东北林业大学机电工程学院 东北林业大学信息与计算机工程学院
母体文献 西北林学院学报
年卷期 2021,36(5)
页码 190-196
年份 2021
分类号 TP391.4
关键词 卷积神经网络 深度学习 迁移学习 混淆矩阵
文摘内容 使用竹片图像实现竹片缺陷自动识别,目前深度学习可以有效地解决该类问题,但是必须使用大量样本数据做训练才能获得较高的识别准确率。当图像数量有限时,利用基于迁移学习的方法,把经过预训练的卷积神经网络模型进行迁移,即共享卷积层和池化层的权重参数,调整新网络模型的超参数,并建立一个包含4种共计6 360张竹片缺陷图像的数据库,把图片分成4种训练集测试集形式,即80%训练、20%测试;60%训练、40%测试;40%训练、60%测试;20%训练、80%测试,分别利用支持向量机SVM分类方法、深度学习方法和迁移学习方法进行训练和测试,并将这3种方法作对比。最后,通过构建竹片缺陷识别的混淆矩阵对迁移学习进行具体分析与说明。结果表明,按照80%训练、20%测试的识别准确率最高,通过迁移学习得到的竹片缺陷最高识别精度分别达到98.97%,比普通深度学习提高了11.55%,比SVM分类方法提高了13.04%。说明迁移学习比普通深度学习和传统支持向量机SVM分类方法更适合用于小样本数据集的分类识别,并且效果优于普通深度学习和SVM分类方法。