编号 zgly0001724916
文献类型 期刊论文
文献题名 应用高斯聚类的单木分割及树高和冠幅的提取
作者单位 东北林业大学
母体文献 东北林业大学学报
年卷期 2021,49(2)
页码 54-59
年份 2021
分类号 S757.3
关键词 机载激光雷达 高斯模型聚类 三维单木 树高 冠幅
文摘内容 针对机载激光雷达点云中基于栅格化的冠层高度模型(CHM)所导致的原始点云数据丢失问题,提出了一种应用高斯模型聚类的单木信息提取方法。采用形态学开运算和高斯平滑方法形成高斯冠层最大模型(GCMM)能减少无关局部最大值对单木分割的影响,利用局部最大值法初步探测树冠顶点,通过最速下降法建立混合高斯模型得到树木位置和冠幅。利用聚类分析划分临近点云归属,进而实现单木参数准确提取,并提取单木最高点为树高。将点云分割方法应用于美国蓝岭地区6块圆形针叶林样地(r=30 m)。结果表明:单木分割F为0.89,正确分割单木树高提取精度95%,冠幅提取精度91%。结合实测数据对提取到的树高和冠幅进行相关性分析,树高R2=0.92,平均误差为-0.83 m;冠幅R2=0.84,平均误差为-0.42 m。相比于分水岭算法,高斯模型聚类方法F提高了11.2%,正确分割单木树高及冠幅提取精度提高了5.5%、5.8%,树高R2提高0.08,平均误差减少0.58 m;冠幅R2提高0.11,平均误差减少0.63 m。