数据资源: 中文期刊论文

基于自适应神经模糊系统的杉木冠幅估算方法



编号 zgly0001685099

文献类型 期刊论文

文献题名 基于自适应神经模糊系统的杉木冠幅估算方法

作者 李永亮  张怀清  杨廷栋  马载阳  李思佳  沈康 

作者单位 中国林业科学研究院资源信息研究所 

母体文献 林业科学 

年卷期 2019年11期

年份 2019 

分类号 S791.27 

关键词 自适应神经模糊系统  冠幅  估算  空间结构单元  智能化 

文摘内容 【目的】基于相邻木特征与对象木冠幅间的复杂关系,提出一种基于自适应神经模糊系统的冠幅估算方法,以提高林木冠幅智能化估算水平。【方法】以杉木为研究对象,根据相邻木相对对象木的距离和方位,采用象限补树法构建空间结构单元。测定100组4方向冠幅、距离和方位角,提出相邻木冠幅、距对象木距离2个自变量的计算方法,以对象木冠幅与相邻木冠幅的比值作为因变量。根据样本数据,分析变量间非线性映射关系,建立25条模糊逻辑推理规则,设计以2个自变量为输入、1个因变量为输出的零阶Takagi-Sugeno模型,以70组数据训练自适应神经模糊系统,以30组数据检验系统冠幅估算效果,并与多元线性回归法和BP神经网络法进行对比。【结果】3种方法冠幅估算值与真实值的线性关系均达显著水平,经检验,本研究方法、BP神经网络法和多元线性回归法的判定系数分别为071、067和066。【结论】基于自适应神经模糊系统的冠幅估算方法可在自变量不含对象木属性特征的情况下,根据空间结构单元内相邻木特征,直接实现对象木冠幅的智能化估算。

相关图谱

扫描二维码