编号
lyqk004743
中文标题
纳米材料与纳米技术在功能性木材中的应用
作者单位
中南林业科技大学材料科学与工程学院,长沙410004;中南林业科技大学材料科学与工程学院,长沙410004;中南林业科技大学材料科学与工程学院,长沙410004;中南林业科技大学材料科学与工程学院,长沙410004;中南林业科技大学材料科学与工程学院,长沙410004;中南林业科技大学材料科学与工程学院,长沙410004
期刊名称
世界林业研究
年份
2015
卷号
28
期号
1
栏目编号
1
栏目名称
专题论述
中文摘要
木材的功能化修饰是提高和改善其性能的有效途径,利用纳米材料与纳米技术所具有的特性和功能来改性木材,可以获得新型功能化的木基纳米复合材料。文中总结了纳米材料、纳米合成技术、纳米表征技术以及纳米仿生智能构筑技术在木材功能性改良中的应用情况,展望了纳米材料与纳米技术在功能性木材研究领域的发展趋势,旨在为木材的功能化修饰研究提供参考。
基金项目
国家林业公益性行业科研重大专项(201204704);十二五国家科技支撑计划课题(2012BAD24B03);湖南省大学生研究性学习与创新性实验计划项目;中南林业科技大学研究生科技创新基金(CX2014B10);中南林业科技大学大学生研究性学习与创新性实验计划项目
英文标题
Application of Nano Materials and Nano Technology to Preparing Functional Wood
作者英文名
Tian Cuihua,Wu Yiqiang,Luo Sha,Qing Yan,Liu Ming and Zhu Xiaodan
单位英文名
School of Materials Science and Engineering,Central South University of Forest and Technology,Changsha 410004,China;School of Materials Science and Engineering,Central South University of Forest and Technology,Changsha 410004,China;School of Materials Science and Engineering,Central South University of Forest and Technology,Changsha 410004,China;School of Materials Science and Engineering,Central South University of Forest and Technology,Changsha 410004,China;School of Materials Science and Engineering,Central South University of Forest and Technology,Changsha 410004,China;School of Materials Science and Engineering,Central South University of Forest and Technology,Changsha 410004,China
英文摘要
The functional modification of wood is an effective way in the improvement of its mechanical, thermal and environmental properties, and the novel functionalized composite materials could be obtained based on nano material and nano technology. The application of nano materials, nano synthesis technology, nano characterization techniques and nano bionic intelligent technology to the functional improvement of wood was summarized in this article. And the development trend of nano materials and nano technology in the field of wood modification was prospected with the aim at providing a new approach to improving functional modification of wood.
英文关键词
nano materials;nano technology;wood;functional modification
起始页码
61
截止页码
66
投稿时间
2014/7/17
分类号
S781.7
DOI
10.13348/j.cnki.sjlyyj.2015.01.009
参考文献
[1] 李坚. 木材科学研究[M]. 北京:科学出版社,2009.
[2] 李坚. 功能性木材[M]. 北京:科学出版社,2011.
[3] 曹国忠,王颖,董新龙. 纳米结构和纳米材料:合成、性能及应用[M]. 北京:高等教育出版社,2012.
[4] 江雷,冯琳. 仿生智能纳米界面材料[M]. 北京:化学工业出版社,2007.
[5] 李坚,孙庆丰. 大自然给予的启发:木材仿生科学刍议[J]. 中国工程科学,2014,16(4):4-12.
[6] 龙玲,万祥龙,王金林. 抗菌型饰面人造板的研究[J]. 林业科学,2006,42(12):114-119.
[7] 王卫东,钟家林,卢晓宁. 抗菌耐磨实木复合地板的性能分析[J]. 木材工业,2004,18(6):36-371.
[8] Kartal S N, Green III F,Clausen C A. Do the unique properties of nanometals affect leachability or efficacy against fungi and termites[J]. International Biodeterioration & Biodegradation, 2009, 63(4): 490-495.
[9] 时尽书,李建章,周文瑞,等. 脲醛树脂与纳米二氧化硅复合改善木材性能的研究[J]. 北京林业大学学报,2006,28(2): 123-128.
[10] 袁光明,刘元,胡云楚,等. 几种用于木材/无机纳米复合材料的纳米粒子分散与改性研究[J]. 武汉理工大学学报,2008,32(1):142-145.
[11] Miyafuji H, Saka S. Fire-resisiting properties in several TiO2 wood- inorganic composites and their topochemistry[J]. Wood Science Technol, 1997, 31(6): 449-455.
[12] Saka S, Ueno T. Several SiO2 wood-inorganic composites and their fire-resisting properties[J]. Wood Science and Technology, 1997, 31(6): 457-466.
[13] Miyafuji H, Saka S. SiO2-P2O5-B2O3 wood-inorganic composites prepared by metal alkoxide oligomers and their fire-resisting properties[J]. Holzforchung, 1998, 52(4): 410-416.
[14] Miyafuji H, Kokaji H, Saka S. Photostable wood-inorganic composites prepared by the sol-gel process with UV absorbent[J]. Journal of Wood Science, 2004, 50(2): 130-135.
[15] Tshabalala A, Sung L P. Wood surface modification by in-situ sol-gel deposition of hybrid inorganic-organic thin films[J]. Journal of Coating Technology and Research, 2007, 4(4): 483-490.
[16] 李坚,邱坚. 气凝胶型木材的形成与分析[M]. 北京:科学出版社,2010.
[17] Schmalzl K J, Evans P D. Wood surface protection with some titanium, zirconium and manganese compounds[J].Polym Degrad Stab, 2003, 82(3): 409-419.
[18] Fu Y C, Yu H P, Sun Q F, et al. Testing of the superhydrophpbicity of a zinc oxide nanorod array coating on wood surface prepared by hydrothermal treatment[J]. Holzforschung, 2012, 66(6): 739-744.
[19] Sun Q F, Lu Y, Zhang H M, et al. Hydrothermal fabrication of rutile TiO2 submicrosperes on wood surface: an efficient method to prepare UV-protective wood[J]. Material Physical Chemistry, 2012, 133(1) : 253-258.
[20] Sun Q F, Liu Y, Zhang H M, et al. Flame retardancy of wood coated by ZnO nanorod arrays via a hydrothermal method[J]. Material Research Innovations, 2012, 16(5): 326-331.
[21] Sun Q F, Lu Y, Xia Y Z, et al. Flame retardancy of wood coated by TiO2-ZnO coating synthesized using a facile one-pot hydrothermal method[J]. Surface Engineering, 2012, 28(8): 555-559.
[22] Carlmark A, Malmström E E. Atom transfer radical polymerization from cellulose fibers at ambient temperature[J]. Journal of the Americam Chemical Society, 2002, 124(6): 900-901.
[23] Kim Y S, Kadla J F. Preparation of a thermoresponsive lignin-based biomaterial through atom transfer radical polymerization[J]. Biomacromolecules, 2010, 11(4): 981-988.
[24] Li G,Yu H P, Liu Y X. Hydrophobic modification of natural cellulose fiber with MMA via surface-initiated ARGET ATRP[J]. Advanced Materials Research, 2011, 221: 90-94.
[25] 李刚,刘一星,于海鹏,等. 原子转移自由基聚合在纤维素表面改性方面的应用[J]. 化工进展,2011,30(6):1270-1276.
[26] 李刚. 利用原子转移自由基聚合方法的木材表面功能性改良[D]. 哈尔滨:东北林业大学,2011.
[27] 黄素涌,李凯夫. 杉木负载二氧化钛薄膜的抗菌性能[J]. 木材工业,2010,24(5):14-19.
[28] 张明,王成毓. 超疏水SiO2/PS薄膜与木材表面的构建[J]. 中国工程科学,2014,16(4):83-86.
[29] 吴义强,田翠花,卿彦,等. APP-SiO2凝胶/杨木阻燃复合材料制备与性能研究[J]. 功能材料,2014,14(45):14113-14117.
[30] Kaneda M, Rensing K, Samuels L. Secondary cell wall deposition in developing secondary xylem of poplar[J]. Journal of Integrative Plant Biology, 2010, 52(2): 234-243.
[31] Shaune J h, Derek G. Atomic force microscope 捩慭污?灥牳攠景潦爠浢獬孡?嵫???敲牵慣浥椠捷獯??渠瑳敥牣湴慩瑯楮潳渠慡汮?㈠ばふ???て?????????ㄠ????forschung, 1994, 48(1): 29-34.
[32] Jäger A, Bader Th, Hofstetter K, et al. The relation between indentation modulus, microfibril angle, and elastic properties of wood cell walls[J]. Composites Part A: Applied Science and Manufactering, 2011, 42(6):677-685.
[33] Konnerth J, Gierlinger N, Keckes J,et al. Actual versus apparent within cell wall variability of nanoindentation results from wood cell walls related to cellulose microfibril angle[J].Journal of Materials Science, 2009, 44(16):4399-4406.
[34] Wu Y, Wang S Q, Zhou D G, et al. Use of nanoindentation and silviscan to determine the mechanical properties of 10 hardwood species[J]. Wood and Fiber Science, 2009, 44(1):64-73.
[35] 刘克松,江雷. 仿生结构及其功能材料研究进展[J]. 科技通报,2009,18(54):2667-2681.
[36] Wang C, Zhang M, Xu Y, et al.One-step synthesis of unique silica particles for the fabrication of bionic and stably superhydrophobic coating on wood surface[J]. Advanced Power Technology, 2014, 25(2): 530-535.
[37] Li J,Yu H P,Sun Q F,et al. Growth of TiO2 coating on wood surface using controlled hydrothermal method at low temperatures[J]. Applied Surface Science,2010,256(16):5046-5050.
[38] Sun Q F,Lu Y,Yang D J,et al. Preliminary observations of hydrothermal growth of nanomaterials on wood surfaces[J]. Wood Science and Technology,2014,48(1): 51-58.
[39] Liu Z T,Fan T X,Zhang D,et al. Hierarchically porous ZnO with high sensitivity and selectivity to H2S derived from biotemplates[J]. Sensors and Actuators B:Chemical,2009,136(2):499-509.
[40] Liu Z T,Fan T X,Gu J J,et al. Preparation of porous Fe from biomorphic Fe2O3 precursors with wood templates[J]. Materials Transactions,2007,48(4):878-881.
[41] Cao J,Rambo C R,Sieber H. Preparation of porous Al2O3-ceramics by biotemplating of wood[J]. Journal of Porous Materials,2004,11(3):163-172.
[42] Cao J,Rusina O,Sieber H. Processing of porous TiO2-ceramics from biologi
PDF全文
浏览全文