编号
lyqk010088
中文标题
竹类植物遗传育种研究进展
作者
高志民
作者单位
1. 国际竹藤中心竹藤资源基因科学与基因产业化研究所 北京 100102;
2. 国家林业和草原局/北京竹藤科学与技术重点开放实验室 北京 100102
期刊名称
世界竹藤通讯
年份
2023
卷号
21
期号
1
栏目名称
特别报道
中文摘要
作为森林植物的重要组成部分,竹类植物在维持生态平衡、保持物种多样性、减缓气候变化、防止水土流失等多方面发挥着积极作用,国际社会对竹资源开发利用的高度关注促进了竹产业的持续快速发展。良种是产业发展的基石,竹子专用品种的缺乏是限制其工业化利用的重要因素,因此竹类植物的遗传育种已成为竹学领域研究的焦点。文章对竹类植物遗传育种中的变异来源、种类识别、育种现状进行了系统总结,尤其是对选择育种、杂交育种、分子育种、智能化育种和新品种审定进行重点概述。针对竹类植物遗传学理论基础薄弱、内在固有遗传障碍和育种技术瓶颈问题,提出了构建遗传学理论、加强种质资源保护与评价和突破育种技术瓶颈的应对策略,以期为竹类植物的新品种选育提供参考。
基金项目
国家重点研发计划项目(2021YFD2200500)。
英文标题
Research Advances in Bamboo Genetics and Breeding
作者英文名
Gao Zhimin
单位英文名
1. Institute of Gene Science and Industrialization for Bamboo and Rattan Resources, International Center for Bamboo and Rattan, Beijing 100102, China;
2. Key Laboratory of National Forestry and Grassland Administration/Beijing for Bamboo and Rattan Science and Technology, Beijing 100102, China
英文摘要
As an important part of forest plants, bamboo plants play an active role in maintaining ecological balance, keeping species diversity, mitigating climate change, reducing water and soil loss, etc. The development and utilization of bamboo plants has received high attention from the international community, which have been promoting the sustainable and high-speed development of bamboo industry. Improved varieties are the cornerstone of industrial development, while the lack of varieties for specific use is the key limiting factor for the industrialized utilization of bamboo. Thus, the genetic breeding of bamboo plants has become a research focus in the field of bamboo science. This paper systematically summarizes the bamboo sources of variation, identification of species and current situation of breeding, especially focuses on selective breeding, cross breeding, molecular breeding, intelligent breeding and new variety approval. In view of the problems arising in bamboo genetics and breeding, such as weak base of theory, inherent genetic barriers and bottlenecks in bamboo breeding technology, this paper puts forward strategies for constructing genetic theory, strengthening germplasm resources protection and evaluation, and breaking through breeding technology bottlenecks, with a view to providing reference for breeding new varieties of bamboo plants.
英文关键词
bamboo plant;variation;genetic breeding;breeding strategy
起始页码
1
截止页码
9
作者简介
高志民,研究员,博士生导师,研究方向为竹藤生长发育的分子基础。E-mail:gaozhimin@icbr.ac.cn。
DOI
10.12168/sjzttx.2023.01.001
参考文献
[1] 张延桢,魏天儒,徐济.楼观台引种毛竹的经营技术及效果调查[J].陕西林业科技, 1991(3):25-28.
[2] 陈铭,郭琳,郑笑,等.中国15个主产区毛竹纤维形态比较[J].南京林业大学学报(自然科学版), 2018, 42(6):7-12.
[3] 马乃训,赖广辉,张培新,等.中国刚竹属[M].杭州:浙江科学技术出版社, 2014.
[4] VORONTSOVA M S, CLARK L G, DRANSFIELD J, et al. World checklist of bamboos and rattans[M]. Beijing:Science Press, 2017.
[5] 王裕霞,张光楚,李兴伟,等.麻竹实生苗无性系选育的研究[J].竹子研究汇刊, 2003, 22(1):23-27.
[6] 张光楚,陈富枢.竹类杂交育种的研究[J].广东林业科技, 1986(3):1-5.
[7] 张光楚,陈富枢.优良的竹子有性杂种:撑麻青1号[J].林业科学, 1980, 16(增刊1):124-126.
[8] 莫健梅,王双飞,兰日初,等.撑绿杂交竹的制浆性能分析[J].造纸科学与技术, 2005(4):28-31.
[9] 王裕霞,张光楚,李兴伟.优良丛生笋用竹及杂种竹竹笋品质评价的研究[J].竹子研究汇刊, 2005, 24(4):39-44.
[10] 王勇,蒋河,郑仁红,等.倬牡竹特性及制浆性能分析[J].四川林业科技, 2020, 41(6):64-68.
[11] FRIAR E, KOCHERT G. A study of genetic variation and evolution of Phyllostachys (Bambusoideae:Poaceae) using nuclear restriction fragment length polymorphisms[J]. Theoretical and Applied Genetics,1994, 89(2-3):265-270. DOI:10.1007/BF00225152.
[12] 吴益民,黄纯农,王君晖.四种竹子的RAPD指纹图谱的初步研究[J].竹子研究汇刊, 1998, 17(3):10-14.
[13] 李潞滨,郭晓军,彭镇华,等. AFLP引物组合数量对准确研究竹子系统关系的影响[J].植物学通报, 2008, 25(4):449-454.
[14] LIN X C, LOU Y F, LIU J, et al. Crossbreeding of Phyllostachys species (Poaceae) and identification of their hybrids using ISSR markers[J]. Genetics and Molecular Research, 2010, 9(3):1398-1404.
[15] 娄永峰,杨海芸,张有珍,等.部分竹类植物遗传变异的AFLP, ISSR和SRAP分析[J].福建林学院学报, 2011, 31(1):38-43.
[16] 高志民,杨丽,李彩丽,等.麻竹EST-SSR标记开发及其对慈竹变异类型的分析研究[J].热带亚热带植物学报, 2012, 20(5):462-468.
[17] 袁金玲,马婧瑕,钟远标,等.基于SSR标记的丛生竹杂种鉴定、遗传分析和指纹图谱构建(英文)[J].南京林业大学学报(自然科学版), 2021, 45(5):10-18.
[18] 李晓瑞,胡尚连,曹颖,等.农杆菌介导慈竹4CL基因遗传转化梁山慈竹[J].林业科学, 2012, 48(3):38-44.
[19] 张玲,蒋晶,乔桂荣,等.利用农杆菌介导法获得转codA基因麻竹再生植株的研究[J].竹子研究汇刊, 2012, 31(1):1-6, 14.
[20] YE S, CAI C, REN H, et al. An efficient plant regeneration and transformation system of ma bamboo (Dendrocalamus latiflorus Munro) started from young shoot as explant[J]. Frontiers in Plant Science, 2017, 8:1298. DOI:10.3389/fpls.2017.01298.
[21] XIANG M, DING W, WU C, et al. Production of purple Ma bamboo (Dendrocalamus latiflorus Munro) with enhanced drought and cold stress tolerance by engineering anthocyanin biosynthesis[J]. Planta. 2021, 254(3):50. DOI:10.1007/s00425-021-03696-z.
[22] 景海春,田志喜,种康,等.分子设计育种的科技问题及其展望概论[J].中国科学:生命科学, 2021, 51(10):1356-1365,1355.
[23] YE S, CHEN G, KOHNEN M V, et al. Robust CRISPR/Cas9 mediated genome editing and its application in manipulating plant height in the first generation of hexaploid Ma bamboo (Dendrocalamus latiflorus Munro)[J]. Plant Biotechnology Journal, 2020, 18(7):1501-1503.
[24] YUAN J L, YUE J J, WU X L, et al. Protocol for callus induction and somatic embryogenesis in moso bamboo[J]. PLoS One. 2013, 8(12):e81954. DOI:10.1371/journal.pone.0081954.
[25] 凡惠金,金康鸣,卓仁英,等.毛竹不同截短U3启动子的克隆及表达分析[J].植物学报, 2020, 55(3):299-307.
[26] HUANG B, ZHUO R, FAN H, et al. An efficient genetic transformation and CRISPR/Cas9-based genome editing system for moso bamboo (Phyllostachys edulis)[J]. Frontiers in Plant Science, 2022, 13:822022. DOI:10.3389/fpls.2022.822022.
[27] TORTI S, SCHLESIER R, THVMMLER A, et al. Transient reprogramming of crop plants for agronomic performance[J]. Nature Plants, 2021, 7(2):159-171.
[28] SUN H Y, WANG S N, ZHU C L, et al. A new biotechnology for in-planta gene editing and its application in promoting flavonoid biosynthesis in bamboo leaves[J]. Plant Methods, 2023. DOI:10.1186/s13007-023-00993-4.
[29] JIN Y, WANG B, BAO M, et al. Development of an efficient expression system with large cargo capacity for interrogation of gene function in bamboo based on bamboo mosaic virus[J]. Journal of Integrative Plant Biology, 2023. DOI:10.1111/jipb.13468.
[30] 朱振贤,蔡函江,毕毓芳,等.簕竹属新品种DUS测试指南的研制[J].竹子学报, 2017, 36(3):44-48, 65.
[31] PENG Z, LU Y, LI L, et al. The draft genome of the fast-growing non-timber forest species moso bamboo (Phyllostachys heterocycla)[J]. Nature Genetics, 2013, 45(4):456-461.
[32] ZHAO H, GAO Z, WANG L, et al. Chromosome-level reference genome and alternative splicing atlas of moso bamboo (Phyllostachys edulis)[J]. Gigascience, 2018,7(10):giy115. DOI:10.1093/gigascience/giy115.
[33] GUO Z H, MA P F, YANG G Q, et al. Genome sequences provide insights into the reticulate origin and unique traits of woody bamboos[J]. Molecular Plant, 2019, 12(10):1353-1365.
[34] ZHENG Y, YANG D, RONG J, et al. Allele-aware chromosome-scale assembly of the allopolyploid genome of hexaploid Ma bamboo (Dendrocalamus latiflorus Munro)[J]. Journal of Integrative Plant Biology, 2022, 64(3):649-670.
[35] ZHAO H, SUN S, DING Y, et al. Analysis of 427 genomes reveals moso bamboo population structure and genetic basis of property traits[J]. Nature Communications, 2021, 12(1):5466. DOI:10.1038/s41467-021-25795-x.
[36] 朱伟垚,林梦婷,吴仲义,等.不同竹龄毛竹茎干内生细菌多样性与功能预测[J].四川农业大学学报, 2022, 40(5):766-774.
PDF全文
浏览全文