数据资源: 科信所期刊全文

森林燃烧剩余物研究进展



编号 lyqk009459

中文标题 森林燃烧剩余物研究进展

作者 李兆国  瓮岳太  石炳东  邸雪颖  杨光 

作者单位 东北林业大学林学院,森林生态系统可持续经营教育部重点实验室,哈尔滨 150040

期刊名称 世界林业研究 

年份 2021 

卷号 34

期号 2

栏目编号 1.0

栏目名称 专题论述 

中文摘要 林火作为陆地生态系统最活跃的生态因子,是生物地球化学循环的关键驱动因素。研究森林燃烧剩余物属性及其生态学功能,有助于深入理解地球生物圈对林火干扰的响应过程,对科学制定植被经营、林火管理措施也具有重要的理论意义。文中综述森林燃烧剩余物的国内外研究进程,阐述燃烧剩余物的主要成分,介绍林火对燃烧剩余物关键地球化学特征的已知影响,并从环境因素和生物因素方面总结燃烧剩余物在火烧迹地生态恢复过程中的重要性,指出目前研究存在的主要问题及未来的研究方向。

关键词 森林火灾  火干扰  森林燃烧剩余物  地球化学特征 

基金项目 国家自然科学基金“兴安落叶松(Larix gmelinii)林土壤微生物对火干扰的响应机制研究”(31870644)

英文标题 Research Progress in Forest-fire Residues

作者英文名 Li Zhaoguo, Weng Yuetai, Shi Bingdong, Di Xueying, Yang Guang

单位英文名 School of Forestry, Northeast Forestry University; Key Laboratory of Sustainable Forest Ecosystem, Ministry of Education, Harbin 150040, China

英文摘要 As the most active ecological factor of terrestrial ecosystem, wildfire is the key driving factor of biogeochemical cycle. The study of the properties and the ecological function of forest-fire residues is conducive to understanding the response process of the earth biosphere to fire disturbance, and also of important theoretical significance for science-based development of vegetation management and wildfire management measures. This paper reviews the research progress of forest-fire residues at home and abroad, expounds the main components of forest-fire residues, introduces the known influence of wildfire on the key geochemical characteristics of forest-fire residues, and summarizes the importance of forest-fire residues in the ecological restoration process of burned area from the perspective of environmental and biological factors, and points out the existing problems and future research directions.

英文关键词 forest fire;fire disturbance;forest-fire residues;geochemical characteristics

起始页码 33

截止页码 38

投稿时间 2020/11/24

最后修改时间 2020/12/27

作者简介 李兆国,男,硕士研究生,主要从事林火生态研究,E-mail:1017164960@qq.com

通讯作者介绍 杨光,女,博士,教授,主要从事林火生态研究,E-mail:lx_yg@163.com

E-mail 杨光,lx_yg@163.com

分类号 S762

DOI 10.13348/j.cnki.sjlyyj.2020.0135.y

参考文献 [1] 吕爱锋, 田汉勤, 刘永强. 火干扰与生态系统的碳循环[J]. 生态学报,2005,25(10):2734-2743.
[2] BODÍ M B, MARTIN D A, BALFOUR V N, et al. Wildland fire ash: production, composition and eco-hydro-geomorphic effects[J]. Earth-Science Reviews, 2014, 130:103-127.
[3] 胡海清, 罗斯生, 罗碧珍, 等. 林火干扰对森林生态系统土壤有机碳的影响研究进展[J]. 生态学报,2020,40(6):1839-1850.
[4] HOLDEN S R, BERHE A A, TRESEDER K K. Decreases in soil moisture and organic matter quality suppress microbial decomposition following a boreal forest fire[J]. Soil Biology & Biochemistry, 2015, 87:1-9.
[5] MERINO A, CHÁVEZ-VERGARA B, SALGADO J, et al. Variability in the composition of charred litter generated by wildfire in different ecosystems[J]. Catena, 2015, 133:52-63.
[6] YUSIHARNI E, GILKES R. Minerals in the ash of Australian native plants[J]. Geoderma, 2012, 189:369-380.
[7] BADÍA D, MARTÍ C. Plant ash and heat intensity effects on chemicaland physical properties of two contrasting soils[J]. Arid Land Research and Management, 2003, 17(1):23-41.
[8] SANTÍN C, DOERR S H, OTERO X L, et al. Quantity, composition and water contamination potential of ash produced under different wildfire severities[J]. Environmental Research, 2015, 142:297-308.
[9] PEREIRA P, ÚBEDA X, MARTIN D A. Fire severity effects on ash chemical composition and water-extractable elements[J]. Geoderma, 2012, 191:105-114.
[10] PEREIRA P, ÚBEDA X, MARTIN D, et al. Wildfire effects on extractable elements in ash from aPinus pinaster forest in Portugal[J]. Hydrological Processes, 2014, 28(11):3681-3690.
[11] 王玉哲, 刘俊第, 严强, 等. 马尾松林采伐迹地火烧黑炭对土壤活性碳氮库的影响[J]. 生态学报,2018,38(20):7198-7207.
[12] 张秋霞, 吴晓生, 严强, 等. 森林火烧黑炭对闽楠幼苗生长及林地土壤养分的影响[J]. 森林与环境学报,2020,40(5):459-465.
[13] KHANNA P K, RAISON R J, FALKINER R A. Chemical properties of ash derived from Eucalyptus litter and its effects on forest soils[J]. Forest Ecology and Management, 1994, 66(1/2/3):107-125.
[14] HUMPHREYS F R, LAMBERT M J. An examination of a forest site which has exhibited the ash-bed effect[J]. Australian Journal of Soil Research, 1965, 3(1):81-94.
[15] PEREIRA P, ÚBEDA X, MARTIN D, et al. Effects of a low severity prescribed fire on water-soluble elements in ash from a cork oak (Quercus suber) forest located in the northeast of the Iberian Peninsula[J]. Environmental Research, 2011, 111(2):237-247.
[16] WOODS S W, BALFOUR V N. The effects of soil texture and ash thickness on the post-fire hydrological response from ash-covered soils[J]. Journal of Hydrology, 2010, 393(3/4):274-286.
[17] BALFOUR W V N. The effect of ash on runoff and erosion after a severe forest wildfire, Montana, USA[J]. International Journal of Wildland Fire, 2008, 17(5):535-548.
[18] CAMPOS I, ABRANTES N, KEIZER J J, et al. Major and trace elements in soils and ashes of eucalypt and pine forest plantations in Portugal following a wildfire[J]. Science of the Total Environment, 2016, 572:1363-1376.
[19] SILVA V, PEREIRA J L, CAMPOS I, et al. Toxicity assessment of aqueous extracts of ash from forest fires[J]. Catena, 2015, 135:401-408.
[20] 刘发林, 向鹏. 火干扰后土壤多环芳烃时空分布特征[J]. 土壤通报,2016,47(4):973-979.
[21] 杜大俊, 张秋霞, 任丽红, 等. 马尾松采伐迹地火烧黑炭对土壤营养元素含量的短期影响[J]. 水土保持学报,2019,33(5):157-162.
[22] PEREIRA P, JORDÁN A, CERDÀ A, et al. Editorial: the role of ash in fire-affected ecosystems[J]. Catena, 2015, 135:337-339.
[23] DLAPA P, BODÍ M B, MATAIX-SOLERA J, et al. FT-IR spectroscopy reveals that ash water repellency is highly dependent on ash chemical composition[J]. Catena, 2013, 108:35-43.
[24] ULERY A L, GRAHAM R C, AMRHEIN C. Wood-ash composition and soil pH following intense burning[J]. Soil Science, 1993, 156(5):358-364.
[25] QIAN Y, MIAO S L, GU B, et al. Effects of burn temperature on ash nutrient forms and availability from cattail (Typha domingensis) and sawgrass (Cladium jamaicense) in the Florida Everglades[J]. Journal of Environmental Quality, 2009, 38(2):451-464.
[26] GOFORTH B R, GRAHAM R C, HUBBERT K R, et al. Spatial distribution and properties of ash and thermally altered soils after high-severity forest fire, southern California[J]. International Journal of Wildland Fire, 2005, 14(4):1527-1557.
[27] DLAPA P, BODÍ M B, MATAIX-SOLERA J, et al. Organic matter and wettability characteristics of wildfire ash from Mediterranean conifer forests[J]. Catena, 2015, 135:369-376.
[28] 徐李亚, 杨万勤, 李晗, 等. 高山森林林窗对凋落物分解过程中水溶性氮和磷的影响[J]. 水土保持学报,2014,28(3):214-221.
[29] 张川, 杨万勤, 岳楷, 等. 高山森林溪流冬季不同时期凋落物分解中水溶性氮和磷的动态特征[J]. 应用生态学报,2015,26(6):1601-1608.
[30] WANG J J, DAHLGREN R A, ERAN M S, et al. Wildfire altering terrestrial precursors of disinfection byproducts in forest detritus[J]. Environmental Ence & Technology, 2015, 49(10):5921-5929.
[31] QUILL E S, ANGOVE M J, MORTON D W, et al. Characterisation of dissolved organic matter in water extracts of thermally altered plant species found in box-ironbark forests[J]. Soil Research, 2010, 48(8):693-704.
[32] WANG J J, DAHLGREN R A, ERSAN M S, et al. Temporal variations of disinfection byproduct precursors in wildfire detritus[J]. Water Research, 2016, 99:66-73.
[33] 张继舟, 吕品, 王立民, 等. 大兴安岭森林土壤重金属含量空间变异与污染评价[J]. 生态学杂志,2015,34(3):810-819.
[34] PEREIRA P, CERDÀ A, ÚBEDA X, et al. Modelling the impacts of wildfire on ash thickness in a short‐term period[J]. Land Degradation & Development, 2012, 26(2):180-192.
[35] BALFOUR V N, WOODS S W. The hydrological properties and the effects of hydration on vegetative ash from the Northern Rockies, USA[J]. Catena, 2013, 111:9-24.
[36] LEWIS S A, WU J Q, ROBICHAUD P R. Assessing burn severity and comparing soil water repellency, Hayman Fire, Colorado[J]. Hydrological Processes, 2006, 20(1):1-16.
[37] 张恒, 候晓佳, 张秋良. 内蒙古大兴安岭典型林分地表死可燃物燃烧性[J]. 福建农林大学学报(自然科学版),2020,49(4):486-491.
[38] 张恒, 甄雅星, 李佳艳, 等. 内蒙古大兴安岭典型乔灌树种及其地表死可燃物热解特性[J]. 林业科学,2020,56(7):104-114.
[39] CRUZ M G, SULLIVAN A L, GOULD J S, et al. Got to burn to learn: the effect of fuel load on grassland fire behaviour and its management implications[J]. International Journal of Wildland Fire, 2018, 27(11):727-741.
[40] REIMER R, ERIKSEN C. The wildfire within: gender, leadership and wildland fire culture[J]. International Journal of Wildland Fire, 2018, 27(11):715-726.
[41] 舒立福, 王明玉, 田晓瑞, 等. 关于森林燃烧火行为特征参数的计算与表述[J]. 林业科学,2004,40(3):179-183.
[42] CERTINI G. Fire as a soil-forming factor[J]. Ambio, 2014, 43(2):191-195.
[43] MALLIK A U, GIMINGHAM C H, RAHMAN A A. Ecological effects of heather burning: I. water infiltration, moisture retention and porosity of surface soil[J]. The Journal of Ecology, 1984, 72(3):767-776.
[44] 刘发林, 曾思齐, 肖化顺, 等. 火干扰对马尾松人工林土壤物理性质的影响[J]. 中南林业科技大学学报,2008,28(1):35-38.
[45] STOOF C R, WESSELING J G, RITSEMA C J. Effects of fire and ash on soil water retention[J]. Geoderma, 2010, 159(3/4):276-285.
[46] EBEL B A. Wildfire impacts on soil-water retention in the Colorado Front Range, United States[J]. Water Resources Research, 2012, 48(12):12515. DOI:10.1029/2012WR012362
[47] EBEL B A, MOODY J A, MARTIN D A. Hydrologic conditions controlling runoff generation immediately after wildfire[J]. Water Resources Research, 2012, 48(3):W03529. DOI:10.1029/2011wr011470
[48] LARSEN I J, MACDONALD L H, BROWN E, et al. Causes of post-fire runoff and erosion: water repellency, cover, or soil sealing?[J]. Soil Science Society of America Journal, 2009, 73(4):1393-1407.
[49] BODÍ M B, DOERR S H, CERDÀ A, et al. Hydrological effects of a layer of vegetation ash on underlying wettable and water repellent soil[J]. Geoderma, 2012, 191:14-23.
[50] ONDA Y, DIETRICH W E, BOOKER F. Evolution of overland flow after a severe forest fire, Point Reyes, California[J]. Catena, 2008, 72(1):13-20.
[51] LASANTA T, CERDÀ A. Long-term erosional responses after fire in the central Spanish Pyrenees[J]. Catena, 2005, 60(1):81-100.
[52] CERDÀ A, LASANTA T. Long-term erosional responses after fire in the central Spanish Pyrenees[J]. Catena, 2005, 60(1):59-80.
[53] LUDWIG B, KHANNA P K, RAISON R J, et al. Modelling cation composition of soil extracts under ashbeds following an intense slashfire in a eucalypt forest[J]. Forest Ecology and Management, 1998, 103(1):9-20.
[54] GONZÁLEZ RABANAL F, CASAL M, TRABAUD L. Effects of high temperatures, ash and seed position in the inflorescence on the germination of three Spanish grasses[J]. Journal of Vegetation Science, 1994, 5(3):289-294.
[55] REYES O, CASAL M. Effects of forest fire ash on germination and early growth of four Pinus species[J]. Plant Ecology, 2004, 175(1):81-89.
[56] NE'EMAN G, MEIR I, NE'EMAN R. The influence of pine ash on the germination and early growth of Pinus halepensis Mill. and Cistus salviifolius L.[J]. Water Science and Technology, 1993, 27(7/8):525-532.
[57] MATAIX-SOLERA J, GUERRERO C, GARCÍA-ORENES F, et al. Forest fire effects on soil microbiology[J]. Fire Effects On Soils and Restoration Strategies, 2009, 5:133-175.
[58] RAISON R J. Modification of the soil environment by vegetation fires, with particular reference to nitrogen transformations: a review[J]. Plant and Soil, 1979, 51(1):73-108.
[59] RAISON R J, MCGARITY J W. Effects of ash, heat, and the ash-heat interaction on biological activities in two contrasting soils[J]. Plant and Soil, 1980, 55(3):363-376.

PDF全文 浏览全文

相关图谱

扫描二维码