数据资源: 科信所期刊全文

净化臭氧和颗粒物复合大气污染的城市绿化树种筛选



编号 lyqk011423

中文标题 净化臭氧和颗粒物复合大气污染的城市绿化树种筛选

作者 薛文凯  黄诗雨  李品 

作者单位 1. 北京林业大学林木资源高效生产全国重点实验室 森林培育与保护教育部重点实验室 干旱半干旱地区森林培育及生态系统研究国家林草局重点实验室 北京 100083;
2. 上海交通大学农业与生物学院 科技部上海长三角区域生态环境变化与综合治理国家野外科学 观测研究站 上海城市

期刊名称 中国城市林业 

年份 2024 

卷号 22

期号 2

栏目名称 研究论文 

中文摘要 随着城市化和工业化进程不断加快,春夏季臭氧(O3)污染和秋冬季颗粒物(PMs)污染等复合大气污染问题成为困扰我国各大城市的环境难题,严重威胁城市森林的碳汇潜力和净化空气等生态系统服务功能。筛选既具有较强吸收O3和PMs能力且具有较低植源性挥发性有机化合物(BVOCs)释放量的抗性树种,是当今维持城市森林生态功能和人类福祉的重要保障。文章通过整合已发表的文献数据,运用权重赋值法和综合因子分析,解析我国常见386种绿化树种的O3吸收能力、PMs吸附能力、BVOCs释放速率以及复合效应。结果表明:侧柏、圆柏和毛白杨表现出较强的O3和PMs吸收、吸附能力和较低的BVOCs释放量,可作为综合抗性能力较强的城市绿化树种进行推广;悬铃木、鹅掌楸和枫香表现出较弱的O3抗性和PMs吸附能力且BVOCs释放速率较高,不适宜作为城市绿化树种栽植。因此,在适地适树的基础上,城市绿化需要综合考虑树种景观布局和下垫面大气污染的组分和严重程度,选择适宜的绿化树种进行绿化布局,最大限度地发挥绿化树种在城市建设中的生态效益。

关键词 BVOCs  O3 PMs  复合污染  城市森林  树种筛选 

基金项目 国家自然科学基金(32271673);北京林业大学“5·5工程”科研创新团队项目(BLRC2023B06);北京市大学生创新创业训练项目(S202110022017)

英文标题 Screening Greening Tree Speciesfor Reducing the Combined Air Pollution by Ozone and Particulate Matters

作者英文名 Xue Wenkai, Huang Shiyu, Li Pin

单位英文名 1. State Key Laboratory of Beijing Forestry University for Efficient Production of Forest Resources/Key Laboratory of Ministry of Education for Silviculture and Conservation/Key Laboratory of National Forestry and Grassland Administration for Silviculture and Forest Ecosystem, Beijing 100083, China;
2. School of Agriculture and Biology, Shanghai Jiao Tong University/Observation and Research Station of Ministry of Science and Technology for Shanghai Yangtze River Delta Eco-Environmental Change and Management/Research Station of National Forestry and Grassland Administration for Shanghai Urban Forest Ecosystem, Shanghai 200240, China

英文摘要 With the accelerating process of industrialization and urbanization, the combined air pollution, such as volatile organic compounds (VOCs), ozone (O3) and particulate matter (PMs), has become the main environmental problem haunting major cities in China, which seriously threatens the services and functions of urban forest ecosystem including carbon sink and air purification. Screening the species with a strong absorption of O3 and PMs and a low release of BVOCs will be the guarantee for maintaining urban forest ecosystem function and human well-being. Based on the published literature, this paper comprehensively analyzes the absorption capacity of O3 and PMs, the release rate of BVOCs and combined effects of 386 common greening tree species using weight assignment and comprehensive factor analysis. The results show that the tree species of Platycladus orientalis, Sabina chinensis and Populus tomentosa have a strong absorption capacity of O3 and PMs and low release rate of BVOCs, which could be promoted in urban greening with strongest tolerance; Juglans regia, Ginkgo biloba and Paulownia fortunei are the tree species with medium absorption capacity of O3 and PMs and high release rate of BVOCs, which are not suitable for use in urban greening. In consideration of the principle of suitable trees for suitable places, more attention would be paid to the landscape layout with urban tree species and the composition and severity of air pollution at the underlying surface in urban greening. Thus, suitable greening species should be selected to maximize the ecological benefits of these species in urban construction.

英文关键词 BVOCs;O3;PMs;combined pollution;urban forest;tree species screening

起始页码 104

截止页码 112

投稿时间 2022/8/3

作者简介 薛文凯(2001-),男,博士生,研究方向为城市生态与长期观测。E-mail:chegov.k@sjtu.edu.cn

通讯作者介绍 李品(1987-),女,博士,副教授,硕士生导师,研究方向为城市林业与环境互作。E-mail:lipin@bjfu.edu.cn

E-mail lipin@bjfu.edu.cn

DOI 10.12169/zgcsly.2022.08.03.0002

参考文献 [1] LORETO F,FARES S.Biogenic volatile organic compounds and their impacts on biosphere-atmosphere interactions[J].Developments in Environmental Science,2013,13:57-75.
[2] LI K,JACOB D J,LIAO H,et al.Anthropogenic drivers of 2013-2017 trends in summer surface ozone in China[J].Proceedings of the National Academy of Sciences of the United States of America,2019,116(2):422-427.
[3] LI P,DE MARCO A,FENG Z Z,et al.Nationwide ground-level ozone measurements in China suggest serious risks to forests[J].Environmental Pollution,2018,237:803-813.
[4] LI P,FENG Z Z,CATALAYUD V,et al.A meta-analysis on growth, physiological, and biochemical responses of woody species to ground-level ozone highlights the role of plant functional types[J].Plant,Cell & Environment,2017,40(10):2369-2380.
[5] LORETO F,SCHNITZLER J P.Abiotic stresses and induced BVOCs[J].Trends in Plant Science,2010,15(3):154-166.
[6] THEIS N,LERDAU M.The evolution of function in plant secondary metabolites[J].International Journal of Plant Sciences,2003,164(S3):93-102.
[7] CLAEYS M,GRAHAM B,VAS G,et al.Formation of secondary organic aerosols through photooxidation of isoprene[J].Science,2004,303(5661):1173-1176.
[8] 张卫强,甘先华,殷祚云,等.二氧化硫胁迫对园林植物幼苗生理生态特征的影响[J].水土保持研究,2012,19(6):247-253.
[9] 陈卓梅.二氧化氮胁迫下樟树的生理生化响应研究[D].杭州:浙江大学,2009.
[10] 鲁敏,王仁卿,齐鑫山.绿化树种对大气氯污染的反应[J].山东大学学报(理学版),2004,39(2):98-101.
[11] 徐丽珊.大气氟化物对植物影响的研究进展[J].浙江师范大学学报(自然科学版),2004,27(1):70-75.
[12] CHURKINA G,GROTE R,BUTLER T M,et al.Natural selection?Picking the right trees for urban greening[J].Environmental Science & Policy,2015,47:12-17.
[13] 徐晓丹,马志影,张杰,等.植物叶表毛状体对空气PM净沉降的影响[J].中国城市林业,2021,19(6):35-40.
[14] 李晓璐,叶锦东,章剑,等.乔木滞留大气颗粒物能力及其与叶表面微结构关系[J].中国城市林业,2022,20(3):22-28,120.
[15] GAO G J,SUN F B,THAO N T T,et al.Different concentrations of TSP,PM10,PM2.5,and PM1 of several urban forest types in different seasons[J].Polish Journal of Environmental Studies,2015,24(6):2387-2395.
[16] FENG Z Z,SUN J S,WAN W X,et al.Evidence of widespread ozone-induced visible injury on plants in Beijing,China[J].Environmental Pollution,2014,193:296-301.
[17] LI P,CALATAYUD V,GAO F,et al.Differences in ozone sensitivity among woody species are related to leaf morphology and antioxidant levels[J].Tree Physiology,2016,36(9):1105-1116.
[18] KRUPA S,MCGRATH M T,ANDERSEN C P,et al.Ambient ozone and plant health[J].Plant Disease,2001,85(1):4-12.
[19] 李品,卫妍妍,冯兆忠.抗大气复合污染的城市森林植物初步筛选[J].环境科学,2020,41(10):4495-4503.
[20] ZENG Y Y,CAO Y F,QIAO X,et al.Air pollution reduction in China:recent success but great challenge for the future[J].Science of the Total Environment,2019,663:329-337.
[21] 赵松婷,李新宇,李延明.园林植物滞留不同粒径大气颗粒物的特征及规律[J].生态环境学报,2014,23(2):271-276.
[22] CATINON M,AYRAULT S,BOUDOUMA O,et al.Atmospheric element deposit on tree barks:the opposite effects of rain and transpiration[J].Ecological Indicators,2012,14(1):170-177.
[23] 李艳梅,陈奇伯,李艳芹,等.昆明10个绿化树种对不同污染区的滞尘及吸净效应[J].西南林业大学学报,2016,36(3):105-110.
[24] 黄慧娟.保定常见绿化植物滞尘效应及尘污染对其光合特征的影响[D].保定:河北农业大学,2008.
[25] 王蕾,哈斯,刘连友,等.北京市六种针叶树叶面附着颗粒物的理化特征[J].应用生态学报,2007,18(3):487-492.
[26] 陈波.臭氧胁迫对4种树木生长状况和生理特性的影响[D].北京:北京林业大学,2018.
[27] 吴丹.地面臭氧污染对树木叶片组织结构的影响[D].北京:北京林业大学,2016.
[28] 王永峰,李庆军.陆地生态系统植物挥发性有机化合物的排放及其生态学功能研究进展[J].植物生态学报,2005,29(3):387-396.
[29] AMEYE M,ALLMANN S,VERWAEREN J,et al.Green leaf volatile production by plants:a meta-analysis[J].New Phytologist,2018,220(3):666-683.
[30] HOE Y C,GIBERNAU M,MAIA A C D,et al.Flowering mechanisms,pollination strategies and floral scent analyses of syntopically co-flowering Homalomena spp.(Araceae) on Borneo[J].Plant Biology,2016,18(4):563-576.
[31] 李双江,袁相洋,李琦,等.12种常见落叶果树BVOCs排放清单和排放特征[J].环境科学,2019,40(5):2078-2085.
[32] 池彦琪,谢绍东.基于蓄积量和产量的中国天然源VOC排放清单及时空分布[J].北京大学学报(自然科学版),2012,48(3):475-482.
[33] 张甜甜,郑炳松,袁虎威,等.植物挥发性有机物合成与代谢途径及其释放与感知调控机制的研究进展[J].天然产物研究与开发,2023,35(6):1068-1080.
[34] 许燕.典型城市绿化树种BVOCs排放特征及其区域总量评估[D].南京:南京信息工程大学,2021.
[35] LORETO F,FINESCHI S.Reconciling functions and evolution of isoprene emission in higher plants[J].New Phytologist,2015,206(2):578-582.
[36] 高超,张学磊,修艾军,等.中国生物源挥发性有机物(BVOCs)时空排放特征研究[J].环境科学学报,2019,39(12):4140-4151.
[37] 郭霞.云南省典型乔木植物挥发性有机物释放规律研究[D].昆明:昆明理工大学,2012.
[38] 李景,王欣,王振华,等.臭氧和气溶胶复合污染对杨树叶片光合作用的影响[J].植物生态学报,2020,44(8):854-863.
[39] 邹宇,邓雪娇,李菲,等.广州番禺大气成分站复合污染过程VOCs对O3与SOA的生成潜势[J].环境科学,2017,38(6):2246-2255.

PDF全文 浏览全文

相关图谱

扫描二维码