编号 zgly0001559224
文献类型 期刊论文
文献题名 枝条遮挡下单个苹果目标识别与重建方法的研究
作者单位 西北农林科技大学机械与电子工程学院 四川大学电子信息学院
母体文献 西北农林科技大学学报(自然科学版
年卷期 2017年11期
年份 2017
分类号 TP391.41
关键词 苹果 自动采摘 枝条遮挡 识别与定位 K-means聚类算法 轮廓曲率
文摘内容 【目的】研究枝条遮挡情况下单个苹果目标的识别,为复杂生长环境下苹果目标的准确识别与定位及实现自动采摘提供支持。【方法】针对果实目标受枝条遮挡影响被分割成几个部分,从而严重影响果实目标准确识别的现状,以枝条遮挡下的苹果目标为研究对象,选用基于Lab颜色空间的K-means聚类算法对苹果目标进行分割,再通过数学形态学方法对目标苹果轮廓进行提取,然后根据最小外接矩形法去除目标苹果的伪轮廓,最后利用轮廓的曲率特征对目标苹果进行重建,并对分割与重建结果进行了方法验证。【结果】利用基于Lab颜色空间下的K-means聚类算法和最小外接矩形法可有效提取出苹果目标的真实轮廓,能够与苹果目标边缘线达到高度重合,同时可获得较准确的重建结果。对10幅枝条遮挡果实目标的识别、定位与重建的验证结果表明,该方法对目标苹果进行分割与重建的平均分割误差为13.83%,平均重叠系数为88.08%,假阳性率和假阴性率分别为1.22%和11.92%,目标苹果重建准确率均在84.00%以上,平均重建时间为24.40s。【结论】应用本研究中的方法可对枝条遮挡下的苹果目标进行准确识别、定位与重建,有效缩短重建时间。