编号 zgly0001691233
文献类型 期刊论文
文献题名 基于频率识别纤维增强树脂复合材料加筋板的分层损伤
作者单位 广州大学广州大学-淡江大学工程结构灾害与控制联合研究中心 华阳国际设计集团(广州)
母体文献 复合材料学报
年卷期 2019年11期
年份 2019
分类号 TB332
关键词 复合材料 加筋板 振动频率 损伤识别 逆向检测算法
文摘内容 以纤维增强树脂(FRP)复合材料加筋板为研究对象,通过对比分层损伤发生前后FRP复合材料加筋板的振动频率变化,来识别FRP复合材料加筋板中的分层损伤。构建了人工神经网络(ANN)和基于有代理模型的优化算法(SAO)两种逆向检测算法,利用FRP复合材料加筋板在损伤前后发生的一系列频率变化值来逆推出FRP复合材料加筋板中的分层位置和大小。分别采用数值验证和实验验证来双重检验ANN和SAO两种算法的识别精度和效率。数值验证结果表明:ANN和SAO两种逆向检测算法对分层损伤位置和大小的识别最大误差分别是5.04%(ANN)和5.24%(SAO),证明方法在理论上可行。实验验证结果表明:ANN在使用实测频率数据进行识别时预测精度很差,无法得到有效的分层损伤信息;而采用SAO可以较好地预测试件中的分层损伤,且对分层大小的预测比对分层位置的预测精度更高,其中,对贯穿损伤和底板损伤的大小预测误差分别不超过2.05%和9%,而四个试件中有两个试件预测的分层与实际的损伤部位存在重合(重合率分别为34%和32.65%)。因此,当前提出的ANN和SAO在理论上可行,但实际应用时都会受到不同程度实测数据误差的影响,相比ANN而言,SAO算法有更好的鲁棒性,在采用实测频率时也可以较为准确地预测出试件中的分层损伤。