编号 zgly0001717774
文献类型 期刊论文
文献题名 基于分位数回归和哑变量模型的大兴安岭兴安落叶松树高-胸径模型
作者单位 东北林业大学林学院
母体文献 中南林业科技大学学报
年卷期 2020年09期
年份 2020
分类号 S758
关键词 分位数回归 哑变量 兴安落叶松 树高-胸径模型
文摘内容 【目的】基于Richards方程比较分位数回归和哑变量模型对树高-胸径方程预测精度的影响,为林业树高-胸径模型的构建提供新的思路和方法。【方法】利用大兴安岭4个区域的兴安落叶松Larix gmelinii伐倒木胸径/树高实测数据,采用分位数回归和哑变量模型构建树高-胸径模型,并与基本模型进行对比分析。评价指标采用平均绝对误差(MAE)、均方根误差(RMSE)、确定系数(R2)、赤池信息量(AIC)、贝叶斯信息量(BIC)、平均预测误差百分比(MPE)、平均绝对百分比误差(MAPE)、均方根百分比误差(RMSPE),同时利用非线性额外平方和法进行区域性检验。【结果】1)Richards树高-胸径模型在9个不同的分位点(τ=0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9)都能收敛,且每个区域都有其对应的最优分位数模型,区域1、2、3和4的最优分位数模型所对应的分位数分别是τ=0.7、τ=0.3、τ=0.5和τ=0.3,各区域最优分位数模型与哑变量模型所得结果差异不大,都优于基本模型。2)F检验结果表明哑变量模型的构造是有必要的,区域2和区域4没有显著不同,其他5对区域都有显著不同。3)模型检验结果表明区域1、3、4的最优分位数回归模型都要优于哑变量模型,区域2的哑变量模型没有通过正态性检验(P=0.028 6),因此区域2的最优模型仍然为τ=0.3时的分位数模型。【结论】分位数回归模型和哑变量模型都能够反映不同区域树高-胸径关系的变化,在拟合和检验统计量等方面都表现较好,适合于大兴安岭落叶松树高预测。在进行方法选择时,可以根据数据特征和研究目的进行选择。