编号 zgly0001589897
文献类型 期刊论文
文献题名 面向属性空间分布特征的空间聚类
作者单位 南京师范大学虚拟地理环境教育部重点实验室 江苏省地理信息资源开发与利用协同创新中心
母体文献 遥感学报
年卷期 2017年06期
年份 2017
分类号 P208
关键词 空间聚类 Delaunay三角网 信息熵 趋势性 不均匀性
文摘内容 空间聚类应当同时满足空间位置邻近和属性相似,在此背景下,为满足空间邻近实体之间趋势性和不均匀性的属性聚类需求,提出一种基于图论和信息熵的空间聚类算法。该算法主要是在Delaunay三角网空间位置聚类基础上,通过引入信息熵,采用多元相似性度量方法以解决二元关系在属性聚类中的缺陷,同时基于等概率最大熵原则提出了一种局部参数度量方法,用于表达邻近目标间属性分布的局部变化信息。将本文方法与多约束聚类方法和DDBSC聚类方法进行对比分析,结果表明:(1)在属性空间分布不均的情况下,本文方法的聚类精度要高于多约束方法和DDBSC方法,尤其是当属性空间分布不均程度不断扩大时,DDBSC和多约束算法会将空间簇内的实体误判为噪声;(2)在对异常值的敏感性问题上,3类方法都能识别出异常值的位置,但DDBSC和多约束算法对异常值具有一定的敏感性,聚类结果会掩盖属性分布的趋势性,本文方法受异常值影响很小。通过模拟实验和实际算例可以发现,在保证空间邻近的基础上本文方法具有如下优势:第一,能反映实体属性在空间分布中的趋势性特征;第二,能满足属性空间分布不均匀;第三,对异常值具有良好的稳健性。