数据资源: 中文期刊论文

基于特征选择的TLS蒙古栎人工林点云分类研究



编号 zgly0001692699

文献类型 期刊论文

文献题名 基于特征选择的TLS蒙古栎人工林点云分类研究

作者 邢涛  汪献义  邢艳秋 

作者单位 东北林业大学森林作业与环境研究中心 

母体文献 中南林业科技大学学报 

年卷期 2020年03期

年份 2020 

分类号 S792.186 

关键词 地面激光雷达  特征选择  点云分类  蒙古栎 

文摘内容 【目的】针对点云分类过程中多依据经验盲目构造特征的问题,本研究提出使用基于xgboost的特征选择弥补上述不足。【方法】本研究的数据为地面激光雷达扫描获得的蒙古栎人工林数据。本研究考虑构造适当的特征训练分类器将TLS点云快速分离为地面、树干与枝叶3个类别。在分类过程中,先在训练集中逐点搜索100个近邻构造19个特征,然后使用这些特征训练xgboost分类器,并依据控制分类器节点分裂的特征频率获得特征重要性。获得特征重要性之后将特征按重要性做降序排列,并依据该序列依次增加特征数量训练xgboost。因为构造了19个特征,所以在上述训练分类器的过程中可获得19个关于特征重要性的分类器模型。依次将上述模型应用于测试集的分类,在保证分类器性能的情况下,依据测试集的表现选择了前6个特征,从而实现了TLS点云分类的特征选择。【结果】使用基于特征选择获得的6个特征与依据经验构造的19个特征训练分类器的测试准确率分别为0.954 8与0.956 2。相较于使用19个特征,使用6个特征的分类器性能仅降低了0.001 4。在训练集与测试集中计算6个特征用时分别占计算19个特征用时的53.13%与54.33%。【结论】结果表明特征选择策略可有效提高特征计算效率,而且在保证分类器性能的前提下可以避免特征构造的盲目性。

相关图谱

扫描二维码