编号 zgly0001679982
文献类型 期刊论文
文献题名 基于PCA-BP神经网络算法桃树叶片SPAD值高光谱估算
作者单位 西北农林科技大学资源环境学院
母体文献 西北林学院学报
年卷期 2019年05期
年份 2019
分类号 S662.1 TP183
关键词 高光谱 SPAD值 红边参数 主成分分析 BP神经网络
文摘内容 光谱技术实现了桃树叶片SPAD(soil and plant analyzer development)值的监测,使用基于主成分分析(principal component analysis,PCA)的BP神经网络算法建立桃树叶片SPAD值光谱估算模型。分析各生育期桃树叶片SPAD值的变化及其与叶片光谱的相关关系,分析5种红边参数与SPAD值的相关性,选取相关性较高的3种红边参数,分别与SPAD值进行单因素建模;然后把红边参数和SPAD值用主成分分析、基于PCA-BP神经网络算法建模,并对估算模型进行验证,结果表明:1)5-9月,桃树叶片SPAD值呈先上升后下降的变化特征,8月达到最大;2)4个生育期所建立的3种模型均通过0.01显著性检验,其中6月估算SPAD值的模型,建模精度和验证精度均最高,R~2≥0.814;3)各生育期桃树叶片SPAD值在单因素模型中,以红边位置建立的模型估算和预测精度最高;4)各个生育期中,基于PCA-BP神经网络模型的估算效果最好,建模精度和预测精度最高,R~2最高分别为0.938和0.974;主成分分析模型次之,单因素模型最低。因此,基于红边参数建立的PCA-BP神经网络反演模型能进行桃树叶片SPAD值的准确估算,为桃树叶片叶绿素含量监测提供理论依据。